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Things Change
(Adapted with permission from “Things Change” by the Maryland Collaborative for Teacher 
Preparation [1].)

Introduction

The only thing certain in life is change. From birth we each grow taller, heavier (and sometimes 
lighter), older, wiser, richer (and sometimes poorer). We live in human communities with 
populations that are changing minute by minute through births and deaths and immigration, and 
at any instant of time many of those people are in motion on foot, bicycles, cars, buses, trains, 
and airplanes. The physical features of the world around us are in constant motion – pushed by 
forces of wind and water and gravity – and our planet Earth is racing around the sun at nearly 
1,700,000 miles per day. In our economic lives the prices we pay for food, clothes, shelter, 
transportation, education, and entertainment go up and down in response to consumer demand 
and producer supply.

Many of the most important problems in mathematics beyond arithmetics require description and 
prediction of changes in related quantitative variables – in other words, construction and use of 
models of change. In some cases those problems involve analysis of changes in variables as time 
passes; in other cases the problem is to understand the ways that changes in some variables cause 
changes in other variables. Algebra and calculus are at the heart of this study of change.

Patterns of Change

When we have information about a relationship between two or more variables, one of the best 
ways to present that information is with coordinate graphs of ( x , y ) data pairs. Such graphs may 
display specific pairs of related numerical values, a line or curve representing the general 
relationship between the x and y values, or both.

The following statements describe nine different situations in which two variables are (or at least 
seem to be) related to each other. Match each situation to the graph that you believe is most 
likely to represent the relation between those variables. Then explain as carefully as you can 
what the shape of the graph tells about the ways the variables change in relation to each other.

1. When a tennis player hits a high lob shot, its height changes as time passes. What pattern 
seems likely to relate time and height?

2. The senior class officers at Lincoln High School decided to order and sell souvenir 
baseball caps with the school insignia, name, and "Class of '95" on them. One supplier 
said it would charge $100 to make the design and then an additional $4 for each cap 
made. How would the total cost of the order be related to the number of caps in the 
order?

3. The population of the world has been increasing for as long as data or estimates have 
been available. What pattern of population growth has occurred over that time?
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4. In planning a bus trip to Florida for spring break, a travel agent worked on the 
assumption that each bus would hold at most 40 students. How would the number of 
buses be related to the number of student customers?

5. The depth of water under the U. S. Constellation in Baltimore Harbor changes due to 
tides as time passes in a day. What pattern would that (time, depth) data fit?

6. When the Lincoln High School class officers decided to order and sell t-shirts with names 
of everyone in the Class of `95, they checked with a sample of students to see how many 
would buy at various proposed prices. How would sales be related to price charged?

7. How does the height of a bungee jumper vary as time passes in the jump?

8. In a wildlife experiment, all fish were removed from a lake and the lake was restocked 
with 1000 new fish. The population of fish then increased over the years as time passed. 
What pattern would likely describe change in fish population over time?

9. According to The Old Farmer's Almanac, if you live near crickets, you can estimate the 
nighttime outdoor temperature in degrees Fahrenheit by counting the number of cricket 
chirps in 14 seconds and adding 40 to that number. If you tested that by gathering data 
and plotting chirps vs. temperature, and the data seemed to support the rule of thumb, 
what might the graph of observations look like?

For each of the scenarios above, select the graph from the following page that you think most 
closely matches the pattern or relationship described. Try not to focus on the units or scales used 
on the axes of each graph (in fact, none of the graphs have such notations), but on the general 
nature of the relationships between the quantities described.
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Mathematical Models

Introduction

When the relationships between the quantities of a real-world problem can be expressed in 
mathematical formulas, we refer to those formulas – along with the “key” that maps the variables 
and constants in the formulas to real-world quantities and units of measure – as a mathematical  
model of the problem.

Example

While exiting the Lunar Module, Apollo 14 mission commander Alan Shepard rolls a golf ball 
off the platform at the top of the ladder.1 The golf ball leaves the platform moving horizontally 
and falls to the Moon's surface from a height of 3 meters. The Moon's gravitational acceleration 
close to the surface is 1.63 meters per second per second. (In other words, after 1 second, a body 
will be falling at 1.63 meters per second; after 2 seconds, it will be falling at 3.26 meters per 
second; and so on.) Since the Moon's atmosphere is so thin, we can ignore atmospheric drag.

If we want to know how the height above the surface of the golf ball at some time t after it leaves 
the platform, up to the moment it hits the ground, we can start with the general formulas for a 
body falling in a vacuum, and adapt them to our problem.

Given

g = gravitational acceleration
t = time
v0 = initial vertical speed
h0 = initial height
v t = vertical speed at time t
h t = height at time t

(1)

Then

v t = v0 + g t

h t = h0 + v0 t + g
2

t 2 (2)

For our scenario,

g = −1.63  meters/sec2

v0 = 0  meters/sec
h0 = 3  meters

(3)

1 In reality, while Alan Shepard famously used a makeshift golf club to hit two golf balls on the Moon, he didn't 
roll any golf balls off the LM platform, as far as we know.
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Taken together, (1), (2), and (3) make up a mathematical model that can be used to answer a 
number of questions about our hypothetical golf ball. We can even set h t=0 and use the 
quadratic formula to solve the second equation of (2) for t, to find out how long it will take the 
ball to reach the ground.

Mathematical Formulas as Patterns of Change

By itself, (2) might not be a very useful model, since without (1) it might not be clear what the 
different variables refer to, and since it doesn't include the information in (3) that's specific to our 
scenario. But general formulas like those in (2) are the essential core of a mathematical model: 
just as a graph visually conveys the relationship between variables, a formula does the same 
thing symbolically. 

See if you can match the equations shown below to the corresponding scenarios or graphs in 
“Patterns of Change”. While none of the formulas is a complete model, some are tied very 
specifically to the corresponding scenarios. Others fit the scenarios to some degree (at least in the 
general shape), but might not express the underlying mathematics accurately. Some are written in 
a general form, where c0 , c1 , etc. represent constant values in the equations.

This is intended to be a challenging exercise, especially when it comes to the last few formulas. 
Don't worry if you don't understand all of the symbols and notation used; see if you can guess 
their meaning from their appearance and use. If you can't match all of the formulas to scenarios 
or graphs, keep in mind that it's possible that some of the formulas don't correspond to any of the 
scenarios or graphs, and vice versa. On the other hand, it's also possible that one (or more) of the 
general formulas matches more than one scenario, or that more than one formula can be matched 
with a single scenario.

i. y = 4x + 100

ii. y =−16 (x − 2)2 + 70

iii. y = ⌈ x
40 ⌉

iv. y = x − 40 + ε

v. y = c0 + c1 x

vi. y = c0 + c1 sin x

vii. y = c0 + c1
cos x
x + 1

viii. y =
c0

1 + ec1−x

ix. y = c0 ec1 (x+c2)
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Statistical Models

Introduction

The final “Patterns of Change” scenario (page 4) mentions a relationship claimed to exist 
between temperature and the rate of cricket chirps. Of course, even if such a relationship exists, 
there could be many other factors besides temperature that affect the rate of crickets' chirps; 
because of this, creating a formal model for this scenario presents a challenge: Even if we 
analyze the data very carefully, and quantity all the factors we can, we won't be able to predict 
the outcome entirely; some portion will remain unpredictable. This unpredictable part might be 
due to known factors that are beyond our practical ability to measure or control them, or it might 
be due to factors we're not even aware of. Whatever the reason, when we build mathematical 
models that acknowledge or include some randomness, uncertainty, or unpredictability in the 
dependent (output) variables, given known independent (input) variable values, we call them 
statistical models.

Statistical Inference

Statistical models are usually constructed by inference. There's not a formal definition of the 
statistical inference process, but we can think of it generally as:

1. Collect, explore, and analyze data.

2. Quantify relationships in the data.

3. Test the model elements – i.e. the relationships quantified in step 2.

4. If the relationships aren't sufficiently supported by the test results, use those results to 
revise assumptions and search for other relationships.

5. Repeat steps 1-4 as appropriate.

This might sound a bit like what you've learned as the scientific method. In fact, statistical 
inference is often an important part of scientific inquiry.

Value of Statistical Models

Can a statistical model still be useful, or does the inherent uncertainty make such a model too 
inaccurate? That's not an easy question to answer. In part, it depends on how well the model fits 
the data. So we not only need to quantify the relationships – we also need to quantify how well 
we can quantify those relationships!

Ultimately, however, the answer boils down to our needs. A model that leaves a majority of the 
variation in the dependent variable unexplained may be sufficient for some purposes, while 
others may dictate that only a model that explains almost all of that change is acceptable.
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Types of Statistical Models

Just as the set of even the most commonly used types of mathematical models is far too broad to 
show in “Patterns of Change”,  there's a wide variety of commonly used statistical model types, 
and we can only hope to touch on a few here. For example, in a polynomial model, the dependent 
variable is expressed as a polynomial function of one or more independent variables (a simple 
form of the polynomial model is the linear model, where there are no terms with degree higher 
than 1); in a cyclical time series model, the dependent variable cycles in value over time (the 
independent variable), either in a relatively smooth sinusoidal fashion, or as the sum of multiple 
sinusoidal cycles of different lengths; in an autoregressive time series model, the value of the 
dependent variable at one moment in time is used as an input value at a later moment, following 
a lag period. (Of course, there are also hybrid models that use combinations of these and other 
types.)

Discussion

1. Besides the cricket chirps scenario, which of the “Patterns of Change” scenarios (if any) 
could be described by statistical models?

2. Assume that we're developing statistical models for each of the following groups of 
variables. What are the independent and dependent variables in each? What type (or 
combination of types) of statistical model, from those mentioned briefly above, might 
best fit real data in each case? 

a) Daily low temperature in Socorro, New Mexico vs. day of the year.

b) Populations of rabbits in the wild in New Mexico, measured or estimated monthly, 
based on the previous month's rabbit and coyote populations.

c) Total monthly precipitation, measured at Denver International Airport, vs. month of 
the year.

d) Annual number of hurricanes in the Atlantic ocean over the past 75 years.

e) End-of-day value of the Dow Jones Industrial Average (a set of representative stocks 
listed on the New York Stock Exchange) over the past 50 years, taking into account 
long-term trends, seasonal variations throughout the year, and the fact that the ending 
value on one day strongly influences the early prices for those stocks in the following 
day.

10 Linear Statistical Models: Basic Concepts with Implementations in Python and Java



Linear Models

Definition

One of the simplest statistical models is applicable to a wide range of problems. In the linear  
model, a dependent variable is expressed as a linear combination of independent variables and an 
error term:2

Y = β 0 + β 1 X 1 + β 2 X 2 + …+ ε, (4)

where

X i  are the independent variables;

Y  is the dependent variable;

β i ∈ ℝ , i=0,1,2,…  (the coefficients are real numbers);

ε  is the error term, a quantity not explained by the model.

 

Formally, the independent variables are assumed to be continuous over real value ranges; in 
practice, this condition is often relaxed to allow for integral or other discrete numeric values. 

Simple Linear Models

In a simple linear model, there's only one independent variable and one dependent variable, so 
(4) becomes

Y = β 0 + β 1 X + ε. (5)

This is often written as

Y = α + β X + ε. (6)

As you've probably figured out already, a linear model is easy to show graphically, along with 
the actual data. It's essentially a straight line through the data points, fitting them as closely as 
possible – though we haven't yet said what “as closely as possible” really means.

Finding the Best Fit

How do we find the straight line that best fits the data? To illustrate the problem, let's look at 
actual data for cricket chirps and temperature, collected by Dr. Peggy LeMone [3]. We'll begin 
by expanding graph F (page 5), adding some details on the scale and units of measure (Figure 1, 
data from Appendix A).

2 In this usage, linear model is synonymous with linear regression model. In other contexts, the same term can 
refer to other model types – e.g. the general linear model, which allows for multiple dependent variables, linear 
combinations of functions (possibly non-linear) of the independent variables, and categorical values.

Linear Statistical Models: Basic Concepts with Implementations in Python and Java 11



Arguably, the most important question to ask at this point is whether a linear model makes sense 
for the relationship between temperature and cricket chirp rate. Even if the answer is yes, we 
shouldn't assume that any apparent relationship will hold under conditions far outside the bounds 
of the observed data. For instance, it seems quite likely that very high or very low temperatures 
would have a disastrous effect on the crickets themselves – and consequently on their chirps.

A linear model seems appropriate in this case, for the range of temperatures observed. But two 
different people, fitting a straight line to the data by sight, will probably draw slightly different 
lines. How can we measure how well each line fits, so that we can select the best fitting one?

It might seem reasonable to evaluate the fit by adding up the differences between the fitted Y 
values (denoted by ŷ i) on the line and the actual Y values (these differences are called residuals 
or errors) for each line under consideration, and use the line with the sum closest to zero. 
However, for any non-vertical straight line that passes through ( x̄ , ȳ ), the positive and negative 
residuals cancel each other out, and the sum is zero. (For a proof of this, see Appendix B.)
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Linear Least-Squares Regression

If we want to use the residuals to assess the quality of fit, we need to keep the negative values 
from canceling out the positive values. Fortunately, we can avoid the problem if we treat the 
residuals as positive values; to do that, we can take the absolute values or the squared values of 
the residuals. Both approaches are used, but taking the squared values makes an analytical 
solution easier. The method of finding the best fitting line by minimizing the sum of the squared 
residuals is called linear (or ordinary) least-squares regression.3

If we denote our  model estimates for α  and β  by a and b, respectively,4 and the fitted line by

Ŷ = a + bX , (7)

then the sum of the squared residuals (sum of squared errors, or SSE) for the model is given by

SSE = ∑
i=1

n

( y i − ŷ)2.
(8)

We could calculate SSE for multiple lines, and choose the line with the lowest value as the best 
fit among them. However, instead of comparing specific alternatives lines, we can use calculus to 
find the values of a and b that give the smallest possible SSE. Even better, we can derive general 
formulas for a and b that can be used with any appropriate data set. This is the aim of least-
squares regression.

Minimizing SSE

We know that if a differentiable function of a single variable has a finite minimum or maximum 
value, it occurs at a stationary point – i.e. a point where the first derivative of the function is 
equal to zero. For example, the minimum y value of an upward-opening parabola occurs at its 
vertex, where the slope is zero. 

The same rule applies to differentiable functions of N variables, as well: if a finite minimum or 
maximum value of the function exists, it must be located at a point where all N of the partial  
derivatives of the function are equal to zero.5 Therefore, to find a and b that give the minimum 
value of SSE, we need to find the combination where the partial derivatives of SSE with respect 
to a and b are equal to zero.6 The first step is thus to compute these partial derivatives.

3 The linear least-squares method is most useful when the residuals aren't correlated with each other or with the 
independent variable, and when they follow a normal distribution. However, even when these conditions are 
known to be not strictly satisfied, this method is still often used, at least as an exploratory tool.

4 The fact that b is typically used for the estimated slope in the linear regression model can cause some confusion, 
since the standard slope-intercept form of the equation of a line is y = mx + b, where b is the intercept.

5 In a function of two or more variables, the partial derivative of the function with respect to one of the variables is 
obtained by taking the derivative with respect to that variable, while treating all other variables as constants.

6 Just as we can use the second derivative of a function of a single variable to determine whether a stationary point 
is a minimum, maximum, or inflection point, we can use the matrix of second partial derivatives (called the 
Hessian matrix) to do this with a function of multiple variables. Though it's outside the scope of this document, it 
can be shown from its Hessian that the sole stationary point of SSE is in fact a minimum, for any data set with at 
least two distinct values of the independent variable.
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∂ (SSE )
∂a

= ∑
i=1

n

[ −2 ( y i − a − b x i )]

= −2(∑i=1

n

y i − a n − b∑
i=1

n

x i)
∂ (SSE )

∂ b
= ∑

i=1

n

[ −2 xi ( y i − a − b x i) ]

= −2(∑i=1

n

x i y i − a∑
i=1

n

x i − b∑
i=1

n

x i
2) (9)

By setting the value of both partial derivatives to 0, we get 2 equations in 2 unknowns. (The x 
and y values aren't unknowns in this case; they're assumed to come from actual data.) Since all of 
our summations are over the same range, we'll leave out the limits and indices from here on.

0 = −2(∑ y − a n − b∑ x )
0 = −2(∑ x y − a∑ x − b∑ x2)

a n + b∑ x = ∑ y

a∑ x + b∑ x2 = ∑ x y
(10)

We can now solve the equations in (10) simultaneously to find a and b.

a n∑ x 2 + b∑ x∑ x2 = ∑ x2∑ y

a (∑ x )2 + b∑ x∑ x2 = ∑ x∑ x y

a [n∑ x2 − (∑ x)2] = ∑ x2 y −∑ x∑ x y

a n∑ x + b (∑ x)2
= ∑ x∑ y

a n∑ x + b n∑ x2 = n∑ x y

b [n∑ x2 − (∑ x )2] = n∑ x y −∑ x∑ y

a = ∑ x2∑ y −∑ x∑ x y

n∑ x2 − (∑ x )2

b =
n∑ x y −∑ x∑ y

n∑ x2 − (∑ x)2

(11)
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A Simple Example

Let's use (11) to find a and b for a simple data set. Given the x and y values provided in Table 1, 
we begin by calculating and filling in the values in the xy and x2 columns. Then, we sum the 
values in each column, and write the totals in the bottom row.

x y xy x2

0 -0.5 0 0
1 0 0 1
2 1.5 3 4
3 2 6 9

∑ x = 6 ∑ y = 3 ∑ x y = 9 ∑ x2 = 14

Table 1: Data and calculations for simple regression example

Finally, we can substitute the values from the bottom row of Table 1, along with the number of 
data points (n = 4), in place of the corresponding sums in (11).

a = ∑ x2∑ y −∑ x∑ x y

n∑ x2 − (∑ x )2

= 14⋅3 − 6⋅9
4⋅14 − 62 =−12

20
=−3

5

b =
n∑ x y −∑ x∑ y

n∑ x2 − (∑ x)2

= 4⋅9 − 6⋅3
4⋅14 − 62 = 18

20
= 9

10

We now have our fitted line, found by linear least-squares regression.

Ŷ =− 3
5

+ 9
10

X (12)

To visualize the fit, we can plot the data points along with the fitted regression line (Figure 2). 
It's easy to see that the fit is pretty good – and because we used least-squares regression, we 
know that this fitted line minimizes SSE. But we're still not sure how to quantify how good the 
fit is.
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The Coefficient of Determination

To assess the quality of a model, or to compare alternative models, we usually need some way to 
measure how well a model fits the data – i.e. to measure its goodness-of-fit. (This isn't the only 
type of measure of interest when evaluating a statistical model, but it's one of the most 
important.)

One way to measure goodness-of-fit is to measure how much of the change in the dependent 
variable is accounted for by the model. First, we need to quantify the total change in the 
dependent variable; we can do this by summing the squared deviations of its observed values 
from its sample mean. We call this the total sum of squares, or SST.

SST = ∑ ( y − ȳ)2

= ∑ y2 −
(∑ y )2

n

(13)

SST can also be expressed as the sum of SSE and the sum of squares of regression (SSR).7

SST = SSE + SSR, (14)

7 Unfortunately, while these abbreviations are used in many textbooks, some others define SSE and SSR with 
meanings opposite to these. In those texts, SSR is the sum of squared residuals (which we're calling the sum of 
squared errors), while SSE is the sum of squares explained (i.e. the regression sum of squares). Adding more 
confusion, still other texts use ESS for explained sum of squares, RSS for residual sum of squares, and TSS for 
total sum of squares. The best way to avoid confusion is to define these terms explicitly when using them.
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where SSE is given by (8), and

SSR =∑ ( ŷ − ȳ)2. (15)

The larger that SSR is in relation to SST, the more that the change in the dependent variable is 
explained by the model. This leads us to a useful goodness-of-fit measure: the coefficient of  
determination, or R2.

R2 = SSR
SST (16)

We can interpret R2 as the fraction of the variation in the dependent variable that's determined or 
explained by the model.8 

Simple Example Revisited: Computing the Coefficient of Determination

Let's calculate R2 for the simple data set in Table 1. To begin, let's add a few more columns to the 
table, for y2, ŷ, and ( y − ŷ )2. Fill in those columns using the original data and the fitted line 
equation given by (12); then, compute the sums for y2 and ( y − ŷ )2 (Table 2).

x y xy x2 y2 ŷ ( y − ŷ )2

0 -0.5 0 0 0.25 -0.6 0.01
1 0 0 1 0 0.3 0.09
2 1.5 3 4 2.25 1.2 0.09
3 2 6 9 4 2.1 0.01

∑ x = 6 ∑ y = 3 ∑ x y = 9 ∑ x2 = 14 ∑ y2 = 6.5 ∑ ( y − ŷ)2 =0.2

Table 2: Calculations for coefficient of determination in simple regression example

Finally, we can use (8), (13), (14), and (16) to find R2.

SSE = ∑ ( y − ŷ )2

= 0.2

SST = ∑ y2 −
(∑ y )2

n

= 6.5 − 32

4
= 4.25

SSR = SST − SSE

= 4.25 − 0.2 = 4.05

8 While R2 is useful, it's often misused. It's easy to fall into the trap of adding more independent variables or 
polynomial terms to a model to increase R2, at the expense of a loss of general predictive power. For this reason, 
an adjusted R2, which discounts the increase from additional terms, is often used when building multivariate or 
polynomial models.
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R2 = SSR
SST

= 4.05
4.25

≈ 0.95

From this, we conclude that approximately 95% of the total change in the dependent variable is 
determined or explained by the independent variable.

Discussion

1. Are there any other curves besides a straight line that fit the data in Table 1? 

2. Should we consider an R2 value of 0.95 to be high enough for a usable model?

3. Do you think a non-linear model could have a higher R2 value?

4. What other factors, besides a difference in R2, might lead us to prefer a linear model over 
a non-linear model, or vice versa?
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Implementation of Simple Least-Squares Linear Regression

General Features and Components

To tackle the cricket chirp problem described in “Patterns of Change” scenario 9, and to see how 
the core techniques of linear regression can be implemented, we'll use code written in two 
different programming languages: Python and Java. The programs provided are functional but 
incomplete: they'll compile and run as-is, but to perform the simple linear least-squares 
regression analysis in each will require some additions to the code.

An important feature that's already provided in the code, but that we won't be examining, is the 
capability to read a simple table of values from a comma-separated-values (CSV) text file. 

While graphical output isn't strictly necessary for regression analysis, it can be very useful in 
exploratory analysis and in presenting regression results. To that end, the Python and Java 
programs use the Matplotlib and JFreeChart open source libraries (respectively) to display the 
input data and the regression results [4], [5]. The capabilities and application programing 
interfaces (APIs) of the two libraries are extensive, but very different from each other; because of 
that, we'll only touch briefly on the code used to plot the data and the regression results.

Apart from the fundamental differences between the two languages, and the differences in the 
plotting libraries, the overall structure of the two implementations is nearly identical by design.

Development Tools

The provided Java code is packaged as a DrJava project, while the Python code is packaged as a 
PyScripter project [6], [7]. However, the programs can be edited and run used with virtually any 
Python v2.5+ or Java v5+ development and runtime environments, provided that Matplotlib or 
JFreeChart is installed.
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Computational Methods

There are a number of different ways to compute measures and estimates used in descriptive and 
inferential statistics, including those for least-squares regression. For example, the following 
formulas for a and b are mathematically equivalent to (11). 

b = ∑ ( x − x̄ ) ( y − ȳ )

∑ ( x − x̄ )2

a = ȳ − b x̄

(17)

It's easy to think of computers as perfect calculators, but the reality is different – especially when 
we put them to the task of numerical analysis with floating-point values:

• Some methods are efficient, but potentially unstable – i.e. in some cases, the calculations 
magnify the inaccuracy inherent in the standard computer representations of most 
floating-point values. 

• Some methods, like (17), are more stable, but less efficient. 

• Still other methods are relatively stable and efficient, but not as easy to understand or 
implement. 

The method for computing a and b used in (11) has potential scale and stability problems; on the 
other hand, it's easily understood and implemented, and it has generally good performance. For 
that reason, it's used in the programs we'll look at now.

Preparation

Python 

Using your chosen Python development tools, locate and open the LinearRegressionPython 
project, and open the files chirps.py and simple_linear.py. The first of these is the main 
Python script that you'll run to execute the linear regression, and the second contains the code 
that performs the mathematical calculations required.

Java 

Locate and open the LinearRegressionJava project, and open the files Chirps.java and 
SimpleLinear.java, both in the org.nm.challenge.kickoff.statmodel package (i.e. 
the org/nm/challenge/kickoff/statmodel directory within the project). Chirps.java 
contains the Java program that you'll run to execute the linear regression, while 
SimpleLinear.java contains the code that performs the mathematical calculations for the 
regression.
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Concepts and Comparisons

Intrinsic data structures

Both Java and Python have certain types of data that are intrinsic – that is, they're recognized and 
supported natively by the compilers/interpreters of the languages. Some of these types are scalar, 
holding a single value, and some hold sequences of multiple values. In Java, the intrinsic type 
that holds multiple values is an array; it can be thought of as a linear, contiguous sequence of 
data, with a fixed number of elements.9 The basic Python intrinsic sequence types (which are in 
fact called sequences) include strings of characters (str and unicode), arrays of single bytes 
(bytearray), and lists and tuples, which are sequences of objects.10 A list is mutable – that is, 
items can be added to and removed from a list – while a tuple is immutable. In Python, a 
programmer doesn't really know or care how the members of a tuple or list are stored in memory, 
and whether they're contiguous or not; the focus tends to be less on scanning across the elements 
in a step-by-step fashion, and more on the high-level operations that are applied to the entire list 
at once, or to a subset satisfying some condition. On the other hand, the fact that Java arrays are 
stored contiguously sometimes allows the Java virtual machine to optimize performance 
dynamically, in ways that are difficult for Python to match.

These differences in structures and supporting operations contribute to fundamental differences 
between the two languages in the approaches to many problems.

Line and statement structure

In Java, a statement may be a simple statement, or a statement block (below). A simple statement 
always ends with a semicolon; even if the statement extends over several lines, it doesn't end 
until a semicolon is encountered. Line breaks, tabs, and space characters are all treated as 
whitespace by the Java compiler. Among other things, this allows a great deal of flexibility 
(which can be misused) in formatting code.

In Python, a line break ends a statement, unless a line continuation character (the backslash) is 
the last non-whitespace character before a line break, or a line break occurs inside a set of 
parentheses or brackets. This means that care must be taken when breaking a line for readability 
purposes. (A semicolon may also be used to end a Python statement; this is usually done only 
when including multiple statements on the same line.)

In Java, a statement block can be used wherever a simple statement is allowed. A statement block 
consists of a zero or more statements, enclosed within a pair of curly braces. So when the formal 
syntax of flow control statements like if, for, and while (see below) allows for conditional or 
iterated execution of a statement, that statement can actually be a statement block. Note that the 
reverse isn't necessarily the case: in some contexts, a statement block must be used; a simple 
statement doesn't suffice in these cases. For example, the definition of a Java method includes a 
method body (the code that implements the method), which must be a statement block.

9 Java also has a String type, which is defined in the standard library. Some of the basic String operations are 
handled as special cases by the compiler, so it is treated in some contexts as an intrinsic type.

10 Python also has the intrinsic buffer and xrange types, which are special-purpose sequences.
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In Python, flow control statements (other than return and break ), as well as class and def 
statements (def marks the start of a function or method definition) are called clauses; a clause is 
terminated by a colon, and must be followed by a suite of statements. A suite consists of one or 
more statements that are controlled by the flow control or definition clause that precedes it. 
(Unlike statement blocks in Java, suites can't be used arbitrarily in place of simple statements; 
they can only be used with a controlling clause.) If the suite contains more than one statement, 
those statements must be indented below the controlling clause; a suite with one statement may 
follow the clause on the same line. If no statements at all are wanted in a suite (this often 
happens when first writing the code for a clause), the pass statement is used. 

The rules for indentation of suites result in one of the most distinctive characteristics of Python 
code: rather than simply being a matter of style, indentation is syntactically significant. Further, 
inconsistent indentation (including mixing tab characters and space characters) can produce 
syntax errors that prevent a Python program from running. For programmers who aren't used to 
Python syntax, this can be inconvenient, at least at the start. But there's a benefit to these rules: in 
syntactically correct Python code, the visual structure of the code usually matches the logical 
structure quite closely. 

We'll see examples of these differences when we look at our Java and Python programs.

Conditional execution of statements 

Like virtually all programming languages, Java and Python include statements for testing a 
condition, then following one path of execution if the condition is true, and either simply 
skipping that path or following another path if the condition is false. The syntax is very similar 
for the two languages, with some basic differences due to the different statement structures, and 
some additional differences in the details:

• In Python, any number of elif (else-if) clauses may follow the if clause (and 
accompanying suite). In Java, there's no special else-if construct: else if is simply the 
else of the preceding if statement, followed by another if. However, in most cases, 
these two syntaxes are roughly equivalent.

• In Python, if, else, and elif are all clauses; each is followed by a statement suite. In 
Java, if and else are followed by statements, which may be simple statements or 
statement blocks.

• In Java, the condition to be tested must be enclosed in parentheses; in Python, such 
parentheses are optional.

Before we look at conditionals in our implementations, let's look at a few simple code fragments 
in Java and Python (Listing 1, Listing 2). Note the difference in comment syntax between the 
two languages; both languages also support a special format for documentation comments, but 
that's not shown here. Also, note the different conventions used for multi-word identifiers 
(variable or function names). Finally, note that doSomething(), doSomethingElse(), etc. 
are simply placeholders for actual functions – they don't actually correspond to anything in the 
example listing, or to built-in functions in either language.
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    // Execute a statement block if the value of some variable x is less than or 
    // equal to the value of another variable y; otherwise, skip over the 
    // statement block.
    if (x <= y) {
        doSomething();
    }
    // Execute a statement block if the value of some variable x is less than or 
    // equal to the value of another variable y; otherwise, execute a second 
    // statement block.
    if (x <= y) {
        doSomething();
    }
    else {
        doSomethingElse();
    }
    // Execute a statement block if the value of some variable x is less than or 
    // equal to the value of another variable y; otherwise, execute a second 
    // statement block if x is greater than z; otherwise, execute a third block.
    if (x <= y) {
        doSomething();
    }
    else if (x > z) {
        doAnotherThing();
    }
    else {
        doSomethingElse();
    }

Listing 1: Conditionals in Java

    # Execute a suite if the value of some variable x is less than or equal to
    # the value of another variable y; otherwise, skip over the suite.
    if x <= y:
        do_something()

    # Execute a suite if the value of some variable x is less than or equal to
    # the value of another variable y; otherwise, execute a second suite.
    if x <= y:
        do_something()
    else:
        do_something_else()

    # Execute a suite if the value of some variable x is less than or equal to
    # the value of another variable y; otherwise, execute a second suite if x is
    # x is greater than z; otherwise, execute a third block.
    if x <= y:
        do_something()
    elif x > z:
        do_another_thing()
    else:
        do_something_else()

Listing 2: Conditionals in Python
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Explicit and implicit iteration 

Java has two mechanisms for iterating over a range of values, over the elements of an array or 
sequence, or over the members of an unordered collection: the for statement and the while 
statement. With a few different variations, these repeat a statement (which may be a statement 
block) as long as a specified condition is true. The repeated statement may be simple statement, 
or (as in Listing 3) a statement block.

    // Repeat a statement block as long as i is less than the number of items in 
    // someArray, incrementing i after each iteration.
    for (int i = 0; i < len(someArray); i++) {
        doSomething();
    }
    // Repeat a statement block for each element of someIntArray (assumes
    // someIntArray is an array of int). In each iteration, j assumes the value
    // of the current element.
    for (int j : someIntArray) {
        doSomething();
    }
    // Repeat a statement block as long as an already declared variable k is less
    // than limit.
    while (k < limit) {
        doSomething();
    }
    // Repeat a statement block as long as an already declared variable k is less
    // than limit, testing the condition at the end of the loop (thus, the loop
    // is executed at least once).
    do {
        doSomething();
    }
    while (k < limit);

Listing 3: Iteration in Java

(It's a fairly common practice, in Java and other C-lineage languages, to use a statement block 
even when just one simple statement is included in the block. Among other benefits, this reduces 
potential logical errors that often occur unintentionally when adding statements to a simple 
statement that's executed conditionally or iteratively.)

Python has for and while statements for explicit iteration as well. However, it also has implicit 
iteration statements that are used for applying an operation to all the items in a sequence, and 
returning a new sequence. The most direct of these is list comprehension, which uses the 
elements of one sequence to construct a new list.

See Listing 4 for simple examples of both explicit and implicit iteration.
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    # Repeat a suite for each value of i from 0 to len(some_list) – 1
    # (inclusive) as long as i is less than or equal to the number of items in
    # someArray, incrementing i after each iteration.
    for i in range(len(some_list)):
        do_something()

    # Repeat a suite for each element of another_list.
    for j in another_list:
        do_something()

    # Repeat a suite as long as an already declared variable k is less than
    # limit.
    while k < limit:
        do_something()

    # Use list comprehension to construct dest_list based on the elements of 
    # source_list, where each element of dest_list is the square of the 
    # corresponding value from source_list.
    dest_list = [x ** 2 for x in source_list]
    # Use list comprehension to construct dest_list based on a subset of the 
    # elements of source_list: each element of dest_list is the doubled value
    # of the corresponding value from source_list, but only for the positive
    # values in source_list.
    dest_list = [2 * x for x in source_list if x > 0]

Listing 4: Explicit and implicit iteration in Python

References to members of an object

Both Java and Python support the definition of classes for object-oriented programming. A class 
is simply a mechanism for packaging data with the behaviors that act on that data, and an object 
is a variable based on a class definition. Classes often correspond to the types of physical or 
logical real-world objects that are modeled or embodied in the program. A presentation of even 
just the key concepts of classes and object-oriented programming is beyond the scope of this 
document, so we'll focus on just those aspects that are most relevant to our implementations.

Java was designed from the start as an object-oriented language, and all Java programs consist of 
one or more class definitions. Python doesn't insist on this approach; this often allows for simpler 
code in cases where classes aren't needed – but when an object-oriented approach is employed, 
Python code in class definitions can be more verbose than the equivalent Java code. This is 
particularly evident in the way that methods (functions that are part of a class definition) refer to 
an instance of that class (an object based on the class definition), and to data and other methods 
of such an instance.

In Java, this refers to the current object instance, but it's usually optional; the Java compiler 
generally recognizes when the code in a method is referring to data and other methods of the 
same object. In Python, self refers to the current object instance, but its use is not optional: it is 
required within methods when referring to data and other methods of the object, and self must 
be the first parameter of each method defined in the class.11

11 Both Python and Java also support the definition and use of static methods and data, which are associated with 
the class as a whole, not with instances of a class; this and self aren't used in static methods.
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Running the Initial Programs

Python program (chirps.py)

Before we make any additions to the code, let's first see what it does already. Let's begin by 
running the chirps.py script in your Python development environment. In PyScripter, we can 
do this by opening the chirps.py script from the Project Explorer; then selecting the 
Run/Run menu command, or typing Ctrl-F9, or pressing the Run button (with the green 
triangular icon) on the button bar near the top of the window. (Because chirps.py is set up as 
the main script in the PyScripter project, we can also run it by right-clicking on the Default run 
configuration in the Project Explorer, and selecting Run from the context menu.)

The first time you run the program, it may take several seconds (even a minute or longer) to 
interpret the code in the three files of the project. But you should eventually see a window 
displaying the cricket chirps vs. temperature data (Figure 3).

Let's examine what's happening at a high level, and follow along with the code itself (Outline 1).
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 1. __main__ script – chirps.py 

This is the main program script, which calls functions in chirps.py and methods 
(directly and indirectly) in the other files.

(a) load function – chirps.py
 i. TableFileParser constructor – parser_util.py

Opens the specified data file, and reads it into memory as a list of lines, where 
each line is a list of data values.

 ii. TableFileParser.floats method – parser_util.py
Returns the previously read data values as floating-point numbers.

(b) SimpleLinear constructor – simple_linear.py
Copies the provided data to self._x and self._y, and stores the number of data 
points in self._n, in preparation for linear regression.

(c) SimpleLinear.regress method – simple_linear.py
 i. SimpleLinear._compute_sums method – simple_linear.py

Currently, this method doesn't do anything (notice the pass statement) Shortly, 
we'll add the code to calculate ∑ x, ∑ y , ∑ x y, ∑ x2, and ∑ y2, and store 
those values in self._sum_x, self._sum_y, self._sum_xy, 
self._sum_x2, and self._sum_y2, respectively. 

 ii. SimpleLinear._estimate_parameters method – simple_linear.py
We'll add code to this method to use the values computed by 
SimpleLinear._compute_sums to calculate the estimated intercept and slope 
of the regression line, and store those in self._intercept and self._slope 
(respectively).

 iii. SimpleLinear._measure_fit method – simple_linear.py
Here, we'll add the code to compute SST, the fitted points on the line, and SSE, 
and use those values to calculate R2, then store that value in self._r2.

(d) plot function – chirps.py
This function calls various methods in the Matplotlib library, which render the 
scatterplot. Notice that this function has an if clause; that the suite for that clause 
(which displays the regression line and equation) will only be executed if  
model.r2 >= 0; and that model is a variable based on the SimpleLinear class. 
Before we add the code for the SimpleLinear._compute_sums, 
SimpleLinear._estimate_parameters, and SimpleLinear._measure_fit 
methods, what is the self._r2 value of a SimpleLinear object? Was the suite for 
this if statement executed when you first ran the program?

Outline 1: Python program structure
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Java program (Chirps.java)

Now let's run the Java program. Java programs require a separate compile step before running, 
but many development environments do that automatically every time a file is saved. DrJava will 
compile automatically if the source files haven't already been compiled, but it doesn't always 
detect when a recompile is needed. So we'll try to make a habit of compiling manually whenever 
we save some changes.

Compile the project and run the Chirps class. In DrJava, do this by first selecting the 
Project/Compile Project menu option, or by clicking the Compile Project button near the top 
of the window; then, select the Project/Run Main Class of Project menu option, or click the 
Run Project button. Each of these steps will probably take a few seconds, after which you'll see 
another scatterplot display (Figure 4).
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Again, let's examine the high-level structure of the program, and the corresponding sections of 
the code. This time, try to notice those aspects which are significantly different from the 
analogous portions of the Python program.

 1. main method – Chirps.jav 

This is the main program method, which calls other methods in Chirps.jav and 
(directly and indirectly) in the other files.

(a) load method – Chirps.jav
 i. TableFileParser constructor – TableFileParser.jav

Opens the specified data file, and reads it into memory as a list of lines, where 
each line is a list of data values.

 ii. TableFileParser.toDoubleArray method – TableFileParser.jav
Returns the previously read data values as double-precision numbers.

(b) SimpleLinear constructor – SimpleLinear.java
Copies the provided data to this.x and this.y, and stores the number of data 
points in this.n, in preparation for linear regression.

(c) SimpleLinear.regress method – SimpleLinear.java
 i. SimpleLinear.computeSums method – SimpleLinear.java

Currently, this method doesn't do anything (notice the empty statement block) 
Shortly, we'll add the code to calculate ∑ x, ∑ y , ∑ x y, ∑ x2, and ∑ y2, and 
store those values in this.sumX, this.sumY, this.sumXY, this.sumX2, and 
this.sumY2, respectively. 

 ii. SimpleLinear.estimateParameters method – SimpleLinear.java
We'll add code to this method to use the values computed by 
SimpleLinear.computeSums to calculate the estimated intercept and slope of 
the regression line, and store those in this.intercept and this.slope 
(respectively).

 iii. SimpleLinear.measureFit method – SimpleLinear.java
Here, we'll add the code to compute SST, the fitted points on the line, and SSE, 
and use those values to calculate R2, then store that value in this.r2.

(d) plot function – Chirps.jav
This function calls various methods in the jFreeChart library, which render the 
scatterplot. Notice that this function has an if statement; based on what you've 
already seen in the Python program, and what you now see in the Java program, was 
the associated statement block executed when you first ran the program?

Outline 2: Python program structure
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Computing the Sums

Python (simple_linear.py)
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Appendix A: Cricket Chirps vs. Temperature
The following observations were recorded by Dr. Margaret LeMone in Boulder, Colorado, over a 
30 day period in August and September, 2007 [3]. According to Dr. LeMone, the measurements 
were originally in chirps per 30 seconds (averaged over multiple successive observations, and 
halved for chirps per 15 seconds) and degrees Fahrenheit (taking the average reading from 
multiple thermometers); the column for chirps per 14 seconds was derived from the original data.

Date Time Chirps/15s Chirps/14s Temp (ºF)
21 Aug 2030 44 41.067 80.5
21 Aug 2100 46.4 43.307 78.5
21 Aug 2200 43.6 40.693 78
24 Aug 1945 35 32.667 73.5
24 Aug 2015 35 32.667 70.5
24 Aug 2100 32.6 30.427 68
24 Aug 2200 28.9 26.973 66
24 Aug 2230 27.7 25.853 65
25 Aug 0030 25.5 23.8 61.5
25 Aug 0330 20.375 19.017 57
25 Aug 0500 12.5 11.667 55
25 Aug 2000 37 34.533 76.25
25 Aug 2030 37.5 35.0 74
25 Aug 2100 36.5 34.067 74
25 Aug 2200 36.2 33.787 72.5
26 Aug 0530 33 30.8 66
26 Aug 2030 43 40.133 77.5
26 Aug 2200 46 42.933 78.5
27 Aug 2000 29 27.067 68.5
27 Aug 2030 31.7 29.587 68.5
27 Aug 2100 31 28.933 68
27 Aug 2200 28.75 26.833 66
28 Aug 0240 23.5 21.933 59
28 Aug 2010 32.4 30.24 70
28 Aug 2050 31 28.933 69
28 Aug 2200 29.5 27.533 67
29 Aug 0240 22.5 21.0 61.25
29 Aug 0440 20.6 19.227 58.5
29 Aug 2000 35 32.667 72
29 Aug 2050 33.1 30.893 71
29 Aug 2200 31.5 29.4 69
29 Aug 2330 28.8 26.88 66.5
30 Aug 0330 21.3 19.88 60
30 Aug 2000 37.8 35.28 75

Linear Statistical Models: Basic Concepts with Implementations in Python and Java 33



Date Time Chirps/15s Chirps/14s Temp (ºF)
30 Aug 2055 37 34.533 73.25
30 Aug 2200 37.1 34.627 72.5
1 Sep 2200 36.2 33.787 70
2 Sep 0330 31.4 29.307 67.5
2 Sep 0600 30.2 28.187 66
4 Sep 0240 31.3 29.213 69
4 Sep 0505 26.1 24.36 63
5 Sep 0500 25.2 23.52 63
6 Sep 0600 23.66 22.083 61
7 Sep 0215 22.25 20.767 62
7 Sep 0525 17.5 16.333 56.5
9 Sep 2010 15.5 14.467 55
9 Sep 2110 14.75 13.767 52
10 Sep 2115 15 14.0 53
10 Sep 2210 14 13.067 50
11 Sep 0315 18.5 17.267 52
16 Sep 2100 27.7 25.853 65
17 Sep 2200 26 24.267 63
18 Sep 0130 21.7 20.253 59
19 Sep 0415 12.5 11.667 50.75
19 Sep 0435 12.5 11.667 49.25
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Appendix B: Proof that the Sum of Residuals is Zero
For any straight line that passes through the point ( x̄ , ȳ ), the sum of errors (residuals) is zero. We 
can prove this using ŷ = ȳ + m ( x − x̄ ) as a general equation for any such line.

Given

x̄ =
∑
i=1

n

x i

n

ȳ =
∑
i=1

n

y i

n

ŷ = ȳ + m ( x − x̄ )

Then

SE = sum of errors (residuals)

= ∑
i=1

n

( yi − ŷ i )

= ∑
i=1

n

[ yi − ȳ − m ( x i − x̄)]

= ∑
i=1

n

( yi − ȳ ) − m∑
i=1

n

( x i − x̄)

= ∑
i=1

n

y i −∑
i=1

n

ȳ − m(∑i=1

n

x i −∑
i=1

n

x̄)
= n ȳ − n ȳ − m (n x̄ − n x̄)

= 0
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Appendix C: Python Implementation of Simple Linear Regression
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

import sys
import matplotlib.pyplot as pyplot
from parser_util import TableFileParser
from simple_linear import SimpleLinear
DEFAULT_DATA_FILE = "chirps.csv"
DEFAULT_DELIMITER = ","
DEFAULT_SKIP_LINES = 1
CHART_TITLE = "Cricket Chirp Rate vs. Temperature"
X_AXIS_TITLE = "Temperature in $^{\circ}$F"
Y_AXIS_TITLE = "Cricket Chirps per 14sec"
MODEL_SPEC = "$\hat{Y} = %8.6f + %8.6fX, \; R^2 = %8.6f$"
def load(args):
    default_params = [DEFAULT_DATA_FILE, DEFAULT_DELIMITER, DEFAULT_SKIP_LINES]
    data_file, delimiter, skip = map(lambda default, actual:
            actual if actual is not None else default,
            default_params, args)[:3]
    observations = TableFileParser(data_file, delimiter, skip).floats()
    x, y = zip(*observations)
    return (x, y)
def plot(model):
    pyplot.title(CHART_TITLE)
    pyplot.xlabel(X_AXIS_TITLE)
    pyplot.ylabel(Y_AXIS_TITLE)
    pyplot.plot(model.x, model.y, marker='o', linestyle='None', color='red')
    if model.r2 >= 0:
        x_bounds = (min(model.x), max(model.x))
        y_fit = [model.intercept + model.slope * x for x in x_bounds]
        fit, = pyplot.plot(x_bounds, y_fit, marker='None', linestyle='-',
                color='blue')
        pyplot.legend([fit],
                [MODEL_SPEC % (model.intercept, model.slope, model.r2)],
                loc='upper left', frameon=False)
    pyplot.show()
if __name__ == "__main__":
    x, y = load(sys.argv[1:])
    model = SimpleLinear(x, y)
    model.regress()
    plot(model)

Listing 5: chirps.py
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class SimpleLinear(object):
    def __init__(self, x, y):
        self._n = len(x)
        self._x = tuple(x)
        self._y = tuple(y)
        self._intercept = 0
        self._slope = 0
        self._r2 = -1
    def regress(self):
        self._compute_sums()
        self._estimate_parameters()
        self._measure_fit()
    @property
    def n(self):
        return self._n
    @property
    def x(self):
        return self._x
    @property
    def y(self):
        return self._y
    @property
    def intercept(self):
        return self._intercept
    @property
    def slope(self):
        return self._slope
    @property
    def r2(self):
        return self._r2
    def _compute_sums(self):
        self._sum_x = sum(self._x)
        self._sum_y = sum(self._y)
        self._sum_xy = sum(map(lambda x, y: x * y, self._x, self._y))
        self._sum_x2 = sum([x * x for x in self._x])
        self._sum_y2 = sum([y * y for y in self._y])
    def _estimate_parameters(self):
        self._intercept = \
                ((self._sum_x2 * self._sum_y - self._sum_x * self._sum_xy)
                / (self._n * self._sum_x2 - self._sum_x * self._sum_x))
        self._slope = ((self._n * self._sum_xy - self._sum_x * self._sum_y)
                / (self._n * self._sum_x2 - self._sum_x * self._sum_x))
    def _measure_fit(self):
        sst = self._sum_y2 - self._sum_y * self._sum_y / self._n;
        fitted = [self._intercept + self._slope * x for x in self._x]
        sse = sum(map(lambda y, y_hat: (y - y_hat) ** 2, self._y, fitted))
        self._r2 = 1 - sse / sst

Listing 6: simple_linear.py
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from __future__ import with_statement   # Not required in Python v2.6+
class TableFileParser(object):
    def __init__(self, file_name, delimiter, skip=0):
        specified file and parsing them into a list of string lists."""
        with open(file_name) as file:
            table = [line.strip().split(delimiter) for line in file
                if 0 != len(line.strip())]
            self._table = table[skip:]
    def strings(self):
        return [row[:] for row in self._table]
    def ints(self):
        return [[int(col) for col in row] for row in self._table]
    def floats(self):
        return [[float(col) for col in row] for row in self._table]

Listing 7: parser_util.py
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package org.nm.challenge.kickoff.statmodel;
import java.awt.Font;
import java.awt.BasicStroke;
import java.awt.Color;
import java.io.FileNotFoundException;
import java.io.IOException;
import org.jfree.chart.ChartFactory;
import org.jfree.chart.ChartFrame;
import org.jfree.chart.JFreeChart;
import org.jfree.chart.annotations.XYLineAnnotation;
import org.jfree.chart.annotations.XYTitleAnnotation;
import org.jfree.chart.plot.PlotOrientation;
import org.jfree.chart.plot.XYPlot;
import org.jfree.chart.title.TextTitle;
import org.jfree.data.xy.DefaultXYDataset;
import org.jfree.ui.HorizontalAlignment;
import org.jfree.ui.RectangleAnchor;
import org.nm.challenge.kickoff.util.TableFileParser;
public class Chirps {
    public static final String DEFAULT_DATA_FILE = "chirps.csv";
    public static final String DEFAULT_DELIMITER = ",";
    public static final int DEFAULT_SKIP_LINES = 1;
    
    private static final String WINDOW_TITLE = "Simple Linear Regression";
    private static final String CHART_TITLE = 
            "Cricket Chirp Rate vs. Temperature";
    private static final String X_AXIS_TITLE = "Temperature in \u00B0F";
    private static final String Y_AXIS_TITLE = "Cricket Chirps per 14sec";
    private static final String MODEL_SPEC = 
            "Y\u0302 = %8.6f + %8.6fX\nR\u00B2 = %8.6f";
       
    public static void main(String[] args) {
        try {
            double[][] data = load(args);
            SimpleLinear model = new SimpleLinear(data[0], data[1]);
            model.regress();
            plot(model);
        }
        catch (Exception e) {
            e.printStackTrace();
        }        
    }
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    private static double[][] load(String[] args) 
            throws FileNotFoundException, IOException {
        double[][] observations;
        double[][] transposed;
        int n;
        String dataFile = DEFAULT_DATA_FILE;
        String delimiter = DEFAULT_DELIMITER;
        int skipLines = DEFAULT_SKIP_LINES;
        if (args.length > 0) {
            dataFile = args[0];
            if (args.length > 1) {
                delimiter = args[1];
                if (args.length > 2) {
                    skipLines = Integer.parseInt(args[2]);
                }
            }
        }
        observations = new TableFileParser(dataFile, delimiter, skipLines)
                .toDoubleArray();
        n = observations.length;
        transposed = new double[2][n];
        for (int i = 0; i < n; i++) {
            transposed[0][i] = observations[i][0];
            transposed[1][i] = observations[i][1];
        }
        return transposed;
    }
    

42 Linear Statistical Models: Basic Concepts with Implementations in Python and Java



75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

    private static void plot(SimpleLinear model) {
        JFreeChart chart;
        DefaultXYDataset data = new DefaultXYDataset();
        double[] xValues = model.getX();
        double[] yValues = model.getY();
        data.addSeries("", new double[][] {xValues, yValues});
        chart = ChartFactory.createScatterPlot(CHART_TITLE, 
                X_AXIS_TITLE, Y_AXIS_TITLE, data, PlotOrientation.VERTICAL, 
                false, false, false);
        if (model.getR2() >= 0) {
            XYTitleAnnotation annotation;
            XYLineAnnotation line;
            XYPlot plot;
            String modelSpec = String.format(MODEL_SPEC, 
                    model.getIntercept(), model.getSlope(), model.getR2());
            TextTitle modelTitle = new TextTitle(modelSpec, 
                    new Font(Font.SERIF, Font.PLAIN, 12));
            double minX = Double.POSITIVE_INFINITY;
            double maxX = Double.NEGATIVE_INFINITY;
            double yMinX;
            double yMaxX;
            for (double x : xValues) {
                if (x < minX) {
                    minX = x;
                }
                if (x > maxX) {
                    maxX = x;
                }
            }
            plot = chart.getXYPlot();
            yMinX = model.getIntercept() + model.getSlope() * minX;
            yMaxX = model.getIntercept() + model.getSlope() * maxX;
            line = new XYLineAnnotation(minX, yMinX, maxX, yMaxX, 
                    new BasicStroke(1f), Color.BLUE);
            modelTitle.setTextAlignment(HorizontalAlignment.LEFT);
            annotation = new XYTitleAnnotation(0.001, 0.999, modelTitle, 
                    RectangleAnchor.TOP_LEFT);
            plot.addAnnotation(line);
            plot.addAnnotation(annotation);
        }
        ChartFrame frame = new ChartFrame(WINDOW_TITLE, chart);
        frame.pack();
        frame.setVisible(true);
    }
    
}

Listing 8: Chirps.java
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package org.nm.challenge.kickoff.statmodel;
public class SimpleLinear {
    private int n = 0;
    private double[] x;
    private double[] y;    
    private double sumX = 0;
    private double sumY = 0;
    private double sumXY = 0;
    private double sumX2 = 0;
    private double sumY2 = 0;
    private double intercept = 0;
    private double slope = 0;
    private double r2 = -1;
    public SimpleLinear(double[] x, double[] y) {
        n = x.length;
        this.x = (double[]) x.clone();
        this.y = (double[]) y.clone();
    }
    public void regress() {
        computeSums();
        estimateParameters();
        measureFit();
    }
    
    public int getN() {
        return n;
    }
    
    public double[] getX() {
        return x;
    }
    public double[] getY() {
        return y;
    }
    public double getIntercept() {
        return intercept;
    }
    
    public double getSlope() {
        return slope;
    }
    
    public double getR2() {
        return r2;
    } 
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    private void computeSums() {
        for (int i = 0; i < n; i++) {
            sumX += x[i];
            sumY += y[i];
            sumXY += x[i] * y[i];
            sumX2 += x[i] * x[i];
            sumY2 += y[i] * y[i];
        }
    }
    
    private void estimateParameters() {
        intercept = (sumX2 * sumY - sumX * sumXY) / (n * sumX2 - sumX * sumX);
        slope = (n * sumXY - sumX * sumY) / (n * sumX2 - sumX * sumX);
    }
    
    private void measureFit() {
        double sst = sumY2 - sumY * sumY / n;
        double sse = 0;
        for (int i = 0; i < n; i++) {
            double residual = y[i] - (intercept + slope * x[i]);
            sse += (residual * residual);
        }
        r2 = 1 - sse / sst;
    }
}

Listing 9: SimpleLinear.java
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package org.nm.challenge.kickoff.util;
import java.io.BufferedReader;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.util.Arrays;
import java.util.LinkedList;
public class TableFileParser {
    private String[][] table;
    public TableFileParser(String fileName, String delimiterRegex, int skipLines)
            throws FileNotFoundException, IOException {
        this(new File(fileName), delimiterRegex, skipLines);
    }
    public TableFileParser(File file, String delimiterRegex, int skipLines)
            throws FileNotFoundException, IOException {
        FileReader reader = null;
        BufferedReader buffer = null;
        LinkedList<String[]> work = new LinkedList<String[]>();
        String line;
        try {
            reader = new FileReader(file);
            buffer = new BufferedReader(reader);
            while (null != (line = buffer.readLine())) {
                if ((0 >= skipLines--) && (0 < line.trim().length())) {
                    String[] values = line.trim().split(delimiterRegex);
                    work.add(values);
                }
            }
        }
        finally {
            if (null != buffer) {
                buffer.close();
            }
            if (null != reader) {
                reader.close();
            }
            table = work.toArray(new String[0][]);
        }
    }
    public String[][] toStringArray() {
        String[][] result = new String[table.length][];
        for (int i = 0; i < table.length; i++) {
            result[i] = Arrays.copyOf(table[i], table[i].length);
        }
        return result;
    }
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    public int[][] toIntArray() {
        int[][] result = new int[table.length][];
        for (int i = 0; i < table.length; i++) {
            result[i] = new int[table[i].length];
            for (int j = 0; j < table[i].length; j++) {
                result[i][j] = Integer.parseInt(table[i][j]);
            }
        }
        return result;
    }
    public double[][] toDoubleArray() {
        double[][] result = new double[table.length][];
        for (int i = 0; i < table.length; i++) {
            result[i] = new double[table[i].length];
            for (int j = 0; j < table[i].length; j++) {
                result[i][j] = Double.parseDouble(table[i][j]);
            }
        }
        return result;
    }
}

Listing 10: TableFileParser.java
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