
NetLogo Tutorial Series:
Introduction to Diffusion-limited Aggregation

Nicholas Bennet
nickbenn@g-r-c.com

October 2015

Credits and licenses

Copyright © 2015, Nicholas Bennet. “NetLogo Tutorial Series: Introduction to
Diffusion-limited Aggregation” by Nicholas Bennet is licensed under a Creative
Commons Atribution-NonCommercial-ShareAlike 4.0 International License.
Permissions beyond the scope of this license may be available; for more information,
contact nickbenn@g-r-c.com.

“Sierpinski triangle.svg” by Beojan Stanislaus is licensed under a Creative Commons
Atribution-ShareAlike 3.0 Unported License [1].

“Koch curve.svg” by Fibonacci is licensed under a Creative Commons Atribution-
ShareAlike 3.0 Unported License [2].

“DLA Cluster.jpg” by Kevin R. Johnson is licensed under a Creative Commons
Atribution-ShareAlike 3.0 Unported License [3].

“Fractal Broccoli.jpg” by Jon Sullivan has been released into the public domain [4].

“Thorax Lung 3d (2).jpg” by AndreasHeinemann is licensed under a Creative
Commons Atribution-ShareAlike 3.0 Unported License [5].

All Mandelbrot and Julia set images rendered in XaoS, © 2008, Jan Hubicka and Thomas
Marsh [6].

All programming screen captures are from NetLogo, © 1999-2015, Uri Wilensky [7].

NetLogo version and code

The code in this tutorial was writen with NetLogo v5.2 and tested with NetLogo v5.2
and v5.2.1; all screen shots are taken with NetLogo v5.2. However, the code should run
correctly as writen with all NetLogo v5.x.

NetLogo code listings and fragments are displayed in DejaVu Sans Mono Bold 10.5pt
type. Type colors match the colors used in the NetLogo code editor:

• Command primitives
• Reporter primitives and predefined agent variables
• Keywords
• Literal values and predefined symbolic constants
• Breeds, procedures, variables
• Placeholders

2 NetLogo Tutorial Series: Introduction to Diffusion-limited Aggregation

mailto:nickbenn@g-r-c.com
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://creativecommons.org/licenses/by-sa/3.0/deed.en
mailto:nickbenn@g-r-c.com
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.g-r-c.com/tutorials/netlogo/
http://www.g-r-c.com/tutorials/netlogo/
http://www.g-r-c.com/tutorials/netlogo/
http://www.g-r-c.com/tutorials/netlogo/
http://creativecommons.org/licenses/by-nc-sa/4.0/

Fractals

Self-similar patterns

A fractal is a structure or a set of points that shows non-trivial repeated paterns at all
scales of interest. If the paterns are repeated identically at all scales, we say the fractal is
exactly self-similar; example of such fractals include the Sierpinski triangle (Figure 1) and
Koch curve (Figure 2): no mater how far we zoom in on either of these two, (in a
mathematical sense, at least), we see the same patern repeated identically.

Figure 1 – Sierpinski triangle Error: Reference source not found.

Figure 2 – Koch curve Error: Reference source not found.

NetLogo Tutorial Series: Introduction to Diffusion-limited Aggregation 3

Another class of fractals with identical self-similarity are some instances of Julia sets
(closely related to the Mandelbrot set, below). For example, in Figure 3, we see what
appears to be a rotated and recolored version of Figure 4. In fact, the former is a portion
of the Julia set defined by the iterative function z → z2+i; the later shows a very small
portion of the former, magnified 100 times. In both, we see the same branching
structures, with the same relative sizes and branching angles.

Figure 3 – Portion of Julia set with c = i [6].

Figure 4 – Portion of Julia set with c = i, magnified 100X [6].

Some other fractals exhibit quasi-self-similarity, where the patern is repeated at different
scales, but with some distortion or degeneration. Many neighborhoods in the
Mandelbrot set are self-similar in this fashion: in Figure 5 and Figure 6, we see similar –
but not identical – bulb and branch structures when we magnify one portion of the
Mandelbrot set by a factor of 100.

4 NetLogo Tutorial Series: Introduction to Diffusion-limited Aggregation

Figure 5 – Mandelbrot set centered at -1.401 – 0.001i., magnified 10X [6].

Figure 6 – Mandelbrot set with same center as Figure 5, magnified 1,000X [6].

Statistical self-similarity and random fractals

Theoretical fractals are usually expressed via iterative or recursive mathematical
operations. Based on these, the identical or quasi self-similarity can be shown
mathematically. However, fractals found in nature are generally statistically self-similar:
while the paterns in these fractals are not repeated exactly, key statistical measures of
those paterns are repeated (at least approximately) at all the scales of interest.

Many plants exhibit statistically self-similar paterns in their branches, leaves, and
blossoms. A striking example of this is found in the Romanesco broccoli (Figure 7).

The human body, like that of most animals, has fractal structures as well – e.g. in the
blood vessels, nervous system, and lungs (Figure 8). We'll come back (briefly) to the
topic of lungs when we explore the concept of fractal dimension.

NetLogo Tutorial Series: Introduction to Diffusion-limited Aggregation 5

Figure 7 – Romanesco broccoli [4].

Figure 8 – Human lung from 3D CT scan [5].

When simulating natural fractal processes on a computer, we often include random
numbers in the calculations that generate these fractals. This technique is quite often
seen in movies and video games, where terrain, vegetation, and other features can be
generated via random fractal algorithms. By design, these fractals will generally have
the statistical self-similarity of the natural fractals they simulate.

6 NetLogo Tutorial Series: Introduction to Diffusion-limited Aggregation

Fractal dimension

Mathematically, fractals can be defined in virtually any number of dimensions.
However, our common sense understanding of dimension and measurement is
challenged by fractals. In particular, while common geometric measures like area and
perimeter allow us to talk about non-fractal shapes in analytical and comparative terms,
they are of much less use to us when it comes to fractals.

For example, consider the process of constructing the Sierpinski triangle: start with an
equilateral triangle; dividing that triangle into 4 smaller, identical equilateral triangles;
remove the center triangle of the 4; repeat the same process of subdivision and removal
with the 3 smaller triangles that remain; repeat the same process indefinitely with the
progressively smaller triangles that remain. We can see that each time we do this
subdivision and removal, we decrease the total area enclosed by a factor of ¼; at the
same time, we increase the perimeter (remember to include the perimeter of the edge
exposed by removing the inner triangle) by a factor of ½. If we do this an infinite
number of times, we end up with an area of zero, and an infinite perimeter! In fact, any
theoretical fractal curve has an infinite length, even though it may be entirely contained
within a finite area of the plane.

In 1967, several years before he coined the term “fractal”, Benoit Mandelbrot published
a paper describing some natural and theoretical curves (e.g. the coastline of Britain, the
Koch curve) in terms of self-similarity and “fractional dimension” [8]. In the paper, he
suggests the later as a useful measure when talking about fractals.

It had long been observed that natural coastlines have statistical self-similarity, and that
that when measuring coastlines, the measured length increases as the increment of
measurement decreases. The more irregular the coastline, the more pronounced this
effect is – and the effect doesn't disappear, even when our increment of measurement
becomes very small.

Contrast the task of measuring a coastline – or measuring a theoretical fractal curve –
with the task of measuring the circumference of a large circle (or measuring the
perimeter of any non-fractal figure). If we have a rigid measuring instrument, and if we
always place the ends of the instrument on the perimeter of the circle, then each
measurement underestimates the circumference. But if we first use a yardstick, then a
12” ruler, then lengths of wood cut to 6” lengths, 3” lengths, etc., then our estimates get
more accurate as we move to smaller measuring sticks; more importantly, we can see
that our estimate is approaching some fixed limit. This is exactly what we expect for a
non-fractal curve.

NetLogo Tutorial Series: Introduction to Diffusion-limited Aggregation 7

On the other hand, if the measured length doesn't seem to approach a limit, but
continues to increase by a constant factor (or at least roughly constant) as the increment
of measurement gets smaller by a constant factor (as is the case for theoretical fractals
and – within practical limits – for coastlines), Mandelbrot asserted that we can use these
two factors to compute a measure of the complexity of the curve. He called this
property of the curve its fractional dimension; it's now more commonly called fractal
dimension, and it can be calculated or estimated not only for curves but also for
constructs of higher topological dimensions (surfaces, volumes, etc.).

At the risk of over-simplifying, we can think of this fractal dimension as a measure of
how much an n-dimensional figure (e.g. a 1-dimensional curve) “fills” a higher-
dimensional space (e.g. a 2-dimensional plane).

Applying this to the examples we've seen so far, we can say that another way of
distinguishing a fractal curve from a non-fractal curve is that while a non-fractal curve
(i.e. the curve of a circle) has a fractal dimension of 1, a fractal curve has a fractal
dimension higher than 1, but less than 2. This is also true of branching fractals on a 2-
dimensional plane, such as the Julia set example shown previously (p. 4).

Fractals defined in higher dimensions have similar relationships between embedding
dimension, topological dimension, and fractal dimension. For example, if a theoretical
3-dimensional fractal has a surface, the area of that surface is infinite; the surface itself is
2-dimensional (topologically speaking), but it will generally have a fractal dimension
greater than 2, and less than 3.

In the case of the human lung (Figure 8), the fractal dimension of the alveoli surface is
approximately 2.97. In other words, we have a surface of topological dimension 2,
nearly filling a 3-dimensional space. Since the ability of lungs to absorb oxygen into the
bloodstream is largely a function of the alveoli surface area, it makes sense that this
branching structure would evolve to have very close to the maximum possible surface
area.

8 NetLogo Tutorial Series: Introduction to Diffusion-limited Aggregation

Diffusion-limited aggregation

Definition

In 1981, physicists Thomas Witen and Leonard Sander proposed an approach for
explaining and modeling the way that certain materials formed low density, high
surface area, branching structures (e.g. Figure 9) [9]. These statistically self-similar
fractal structures typically form when the component materials are distributed through
diffusion in some liquid or gas. Reflecting this, the modeling approach (and the
explanatory mechanism for the real-world processes) is called diffusion-limited
aggregation (DLA). In a model, it operates as follows:

1. Start with a stationary particle at the center of a large latice – a regularly spaced
arrangement of points.1 This is the “seed” around which the aggregate will form.

2. Add a particle to a random point on the latice, some distance away from the seed.

3. Let this new particle take a random step along the latice – i.e. move to one of the
adjacent latice points, selected at random with equal likelihood. If this step causes
the particle to leave the boundaries of the latice, reposition it as in step 2.

4. Repeat step 3 until the random walk brings the moving particle to a point adjacent to
a stationary particle. When that happens, the moving particle joins the aggregate –
that is, it becomes stationary itself.

5. Repeat steps 2-4 to add more particles to the aggregate, until it reaches the desired
mass or size.

An example of an aggregate formed in this fashion (using a model similar to the one
we'll be building) is shown in Figure 10.

1 Typically, either a square or equilateral triangular latice is used. The approach can also work in more
than 2 dimensions; for example, in 3 dimensions, we could use a cubic or regular tetrahedral latice.

NetLogo Tutorial Series: Introduction to Diffusion-limited Aggregation 9

Figure 9 – Copper aggregate formed in a copper sulfate solution [3].

Figure 10 – DLA simulation with 5,000 particles on a square lattice

10 NetLogo Tutorial Series: Introduction to Diffusion-limited Aggregation

Development and use

In the years since the first publication of the approach, DLA and its variants have been
used (and extended) to model a much wider variety of systems than the authors
originally anticipated. Applications include not only chemical and physical systems
characterized by diffusion, but biological, ecological, and social systems as well; in such
applications, diffusion and aggregation are used as analogues or proxies for the actual
transport or grouping mechanisms in the systems.

One such application is found in two 1989 papers on urban growth, by S. Alexander
Fotheringham, Michael Baty, and Paul Longley [10],[11]. In the second paper
(“Diffusion-Limited Aggregation and the Fractal Nature of Urban Growth”), the
authors conclude:

The present research should be viewed as providing a means of understanding
elements such as the contiguous nature of development, the tentacular nature of
urban growth, and the presence of urban density gradients, that are common to
many cities. In a broader context, DLA provides an example that order can be
abstracted from structures such as cities that are seemingy chaotic.

Another surprising class of examples is found in the work of mathematician and artist
Gary Greenfield, who has explored the artistic application of DLAs in combination with
evolutionary computing and image rendering via mosaic tiles [12],[13]. An example of
Greenfield's work combining DLA and tiling is seen in Error: Reference source not
found.

In 2000, Leonard Sander wrote a follow-up to the original 1981 DLA paper (he has also
writen several other papers on the subject), partly with the aim of surveying the
breadth of DLA applications [14]. In this paper, he states:

What makes this subject so interesting and, in fact, rather peculiar are three facts.

(i) The extremely simple process seems to seize the essential ingredients of a great
many natural phenomena with very litle physical input.

(ii) It produces clusters of intriguing complexity which look very much like real
objects which are random, tenuous and approximately self-similar. The
mathematical fact that the simple algorithm makes self-similar (fractal) clusters
is remarkable. The fact that things very like this occur rather commonly in
nature is still more remarkable.

(iii) The simple process in the algorithm has resisted analysis despite the fact that
the model is very widely known. This is a devilishly difficult model to solve,

NetLogo Tutorial Series: Introduction to Diffusion-limited Aggregation 11

even approximately.

It is precisely this set of characteristics that make DLA an interesting topic for NetLogo
implementation – and a good fit with NetLogo's capabilities.

Figure 11 – Algorithmic enlargement of 194 X 259 photograph
(by J. Ward) using DLA dendrite mosaic tiles [13].

12 NetLogo Tutorial Series: Introduction to Diffusion-limited Aggregation

Basic NetLogo implementation

General specifications

For our first DLA model, we'll stick fairly closely to Witen & Sander's description
(using a turtle breed as the particles and patches as the latice) with a few exceptions:

• Instead of adding a single particle at a time to the aggregate, we'll create several
moving particles; all of these particles will take a step in a random walk on each tick.
However, these particles will not interact with each other in any way.

• Rather than relocate a moving particle to a random location when a random walk
step would cause it to leave the latice, we'll enable horizontal and vertical wrapping
(these options are enabled by default anyway).

• When a particle becomes stationary and is added to the aggregate, we'll indicate it
by changing the patch color where the particle is located; then, the particle will be
moved to a random location in the NetLogo world, as if a new moving particle were
being added at that time. Thus, the aggregate will appear as colored patches.

• For this version of the model, we won't worry about initially placing the particles (or
moving them after aggregation) some distance away from the aggregate; instead, a
random patch location will be chosen.

NetLogo concepts and vocabulary

The following assumes some familiarity with basic concepts of agent-based modeling
and NetLogo. Even with this background, it might be useful to review the companion
document, “NetLogo Tutorial Series: Introduction and Core Concepts” [15].

The following tables summarize the NetLogo keywords, predefined agent variables,
command primitives, reporter primitives, and user interface elements this model will
use. Although the sheer number shown here may be intimidating, most are quite simple
to understand and use. Even beter, while the full list of command & reporter
primitives, predefined agent variables, predefined constants, and keywords numbers in
the hundreds, those used in the model make up a sizable fraction of the essential subset
of the NetLogo language elements, sufficient to build most models.

Keep in mind that when the agentset placeholder appears in these summaries, the
specified agentset may be a predefined agentset (turtles, patches, links), a breed
agentset (declared with the breed keyword), or any reporter expression that evaluates
to an agentset.

NetLogo Tutorial Series: Introduction to Diffusion-limited Aggregation 13

A more extensive summary of agentset-related primitives can be found in the
companion document, “NetLogo Tutorial Series: Set Theory Concepts and
Applications” [16].

These table entries should not be read as normative or authoritative; the NetLogo
Dictionary should be used for that purpose [17].

Keyword Declaration or definition purpose
breed [plural-name

singular name]
Declares a custom turtle breed. plural-name is declared
as a global agentset (all turtles of this breed are added to
the agentset automatically), and can be used in a create-
breeds command. singular-name is optional (but highly
recommended); it is declared as a reporter which can be
invoked as singular-name who-number to identify a
single turtle of this breed.

All breed declarations must appear before any procedure
definitions in the code.

to procedure-name
[input-parameters]
commands

end

Declares and defines the procedure procedure-name.
When invoked, the current agent executes commands.

The square brackets and input-parameters are optional;
if specified, the symbol names in input-parameters may
be accessed as local variables in the scope of the
procedure, and actual parameter values must be provided
(as literal values or reporter expressions) when
procedure-name is invoked.

Table 1 – Keywords used in basic implementation of DLA.

Predefined agent variable Contains
color Color of turtle
heading Direction turtle is facing, expressed in degrees (0 to 360)
pcolor Color of patch
shape Display shape of turtle. This value must be the name of

one of the shapes in the Turtle Shapes Editor (available
via the Tools/Turtle Shapes Editor menu command).

Table 2 – Predefined agent variables used in basic implementation of DLA.

14 NetLogo Tutorial Series: Introduction to Diffusion-limited Aggregation

Command primitive Action Applicable agents
ask agent [commands]
ask agentset

[commands]

Instructs agent or agentset to
execute commands.

observer, turtles,
patches, links

clear-all Kills all turtle and link agents; resets
patch agents to default state; resets
global variables to default values;
clears all plots; clears all output
elements; disables simulation clock.

observer

create-breeds number
[commands]

Creates number of turtles of breed
breeds (which may be a custom breed
or the generic turtles breed). The
square brackets and commands are
optional; if specified, each turtle
created will execute commands, after
all number turtles have been created.

observer

forward number Instructs the current turtle to move
number steps forward.

turtles

if condition
[commands]

The current agent evaluates the
Boolean reporter condition, and – if
the result is true – executes commands.

observer, turtles,
patches, links

let variable value Declares a local variable in the scope
of the current procedure or command
block, and assigns it an initial value.

observer, turtles,
patches, links

reset-ticks Enables and sets the simulation clock
to an initial value of 0.

observer

set variable value Assigns value to a global variable,
agent variable of the current agent (a
turtle may treat the variables of the
patch where it is standing as its own
variables), or local variable already
declared in the current scope.

observer, turtles,
patches, links

setxy x y Changes the (X, Y) coordinates of the
current turtle to (x , y).

turtles

tick Advances the simulation clock by 1. observer
Table 3 – Command primitives used in basic implementation of DLA.

NetLogo Tutorial Series: Introduction to Diffusion-limited Aggregation 15

Reporter primitive Reports …

any? agentset … true if agentset has any elements; false if it's empty.
count agentset … the number of elements in agentset.
neighbors4 … the subset of patches that are directly – but not

diagonally – adjacent to the current patch.
[reporter] of agent
[reporter] of agentset

… the value of reporter, when evaluated by agent, or a
list of the values of reporter evaluated by all members of
agentset (in random order).

one-of list
one-of agentset

… one element of list or agentset, selected at random
with equal probability.

patch x y … the patch agent located at coordinates (x, y)
(automatically rounded to integers, as necessary).

random-pxcor
random-pycor

… a random integer in the range of the currently defined
X or Y axis (respectively), with uniform probability.

agentset with
[condition]

… the subset of agentset containing all elements for
which condition reports a value of true.

Table 4 – Reporter primitives used in basic implementation of DLA.

User interface element Purpose

buton Instructs all agents of a single type (observer, turtles,
patches, links) to execute a sequence of commands.

The buton can be configured for execution once per
buton click, or as a toggle – clicked once to activate and
again to deactivate; in the later mode, the specified
commands are executed repeatedly while the buton is
activated (pressed).

monitor Evaluates and displays the result of a specified reporter
expression. This evaluation is performed by the observer,
asynchronously with any model code – and regardless of
whether any buton is currently pressed.

slider Declares a global variable and presents a user control for
seting its value within a specified numeric range.

Table 5 – User interface elements used in basic implementation of DLA.

16 NetLogo Tutorial Series: Introduction to Diffusion-limited Aggregation

Configuring the NetLogo world

1. Start by opening NetLogo 5.x, or – if it's already running – selecting the File/New
menu command, to create a new model. (Do not use the 3D version of NetLogo for
this model.)

2. Before we write any code, we need to set the logical size and topology of the world,
and make sure that the entire world can be displayed on the screen. (The last part
isn't strictly necessary, but it does make it a lot easier, when we're building a model,
if we can see the whole thing.)

3. Maximize the NetLogo window, so it takes up the entire screen (or as much of it as
you prefer). Then click the Settings… buton in the toolbar area near the top of the
Interface tab. In the Model Settings dialog window, change or verify the following
setings:

• Location of origin: Center

• max-pxcor: 87

• max-pycor: 87

• World wraps horizontally: checked

• World wraps vertically: checked

• Patch size: 3

• Font size: (not used in this model; leave set to default value)

• Frame rate: 30

• Show tick counter: checked

• Tick counter label: ticks

Model setings should now resemble Figure 12.

4. Click the OK buton to apply the specified setings.

5. If the NetLogo world occupies too much or too litle space, repeat steps 3-4, as
necessary, adusting the Patch size seting.

NetLogo Tutorial Series: Introduction to Diffusion-limited Aggregation 17

Figure 12 – Recommended model settings for basic implementation.

Creating a slider for the number of particles

1. Create a slider by right-clicking (Ctrl-click on Mac) somewhere in the white space to
the left or right of the NetLogo world and selecting Slider from the pop-up menu, or
by selecting Slider from the pull-down menu to the right of the Add buton and
clicking in the white space to the left or right of the NetLogo world.

2. In the Slider dialog window that appears, set or verify the following:

• Global variable: num-particles

(Note: Make sure there are no spaces in this field – not even after the end of the
text!)

18 NetLogo Tutorial Series: Introduction to Diffusion-limited Aggregation

• Minimum: 0

• Increment: 10

• Maximum: 500

• Value: 500

• Units: (blank)

• vertical? not checked

3. After checking your setings against Figure 13, click the OK buton to create the
slider with the specified setings, and to declare a global variable named num-
particles. (Note that this declaration will not appear in the Code tab of your
model, but is implicit in the existence of a slider by the same name.)

Figure 13 – Settings for the num-particles slider and global variable.

Writing code to initialize the model

1. Switch to the Code tab.

2. Write the code shown in Listing 1 to declare a particles breed, and to initialize the
model with a single white patch in the center of the world, and num-particles
turtles of the particles breed distributed randomly around the world. Note that by
convention, the main command procedure for initializing the model is called setup;
it's not required to use this name, but since the convention is widely used, following
it will make it easier for others to understand your code.

As you write and the review the code, you might find it useful to read the summary
of the keywords, primitives, and variables in the “NetLogo concepts and
vocabulary” section (p. 13).

Note that in this code (and in some instances that follow), parentheses have been
used for visual clarity; however, they're not required in this case, or in any of the
code in this tutorial. Be sure that if you use parentheses, they are correctly balanced.

NetLogo Tutorial Series: Introduction to Diffusion-limited Aggregation 19

3. Use the Check buton (in the toolbar near the top of the Code tab) to verify that the
syntax of your code is correct. Keep in mind that the great majority of errors caught
by this feature have the following causes:

• Incorrect spelling of NetLogo primitives, keywords, predefined variables, and
predefined constants (accidentally replacing hyphens with spaces or underscores
is a particularly common culprit);

• Inconsistent spelling of your own variable, breed, and procedure names;

• Missing white space before or after mathematical or logical operators.

• Mismatched or misplaced square brackets or parentheses.

4. If an error messages appears when you check your code, read the message carefully,
note the highlighted location in the code, and use this information to correct the
error.

breed [particles particle]

to setup
 clear-all
 ask (patch 0 0) [
 set pcolor white
]
 create-particles num-particles [
 set color green
 set shape "circle"
 setxy random-pxcor random-pycor
]
 reset-ticks
end

Listing 1 – particles breed and setup procedure.

Creating a button to invoke the setup procedure

1. In the Interface tab, create a buton in the same way that you previously created a
slider, but selecting Button from the pop-up or pull-down menu.

2. In the Buton dialog window, set the following values:

• Agent(s): observer

• Forever: not checked

• Disable until ticks start: not checked

• Commands
setup

20 NetLogo Tutorial Series: Introduction to Diffusion-limited Aggregation

• Display name: (optional; if not specified, the text of the Commands field will be
displayed as the buton label)

• Action key: (optional)

3. Verify your setings against Figure 14 (keeping in mind that Display name and
Action key are optional), and click OK to create your Setup buton.

Figure 14 – Setup button settings.

Saving and testing your model so far

1. From the pull-down control below the view updates checkbox (in the toolbar of the
Interface tab), select on ticks. For this model, this seting will make the display of
the model smoother – in the initialization as well as (eventually) in the main
simulation execution.

2. Use the File/Save command to name and save your model (make sure it's saved to
an appropriate data directory, and not the NetLogo program directory).

3. Click the Setup buton to invoke your setup procedure, and initialize your model. If
you have the num-particles slider set to 500, your NetLogo world should resemble
Figure 15. The small white square at the center of the world is the patch at the center
of the latice, and each green dot is a turtle agent of the particles breed.

4. Repeat step 2 with different values of num-particles, verifying that the number of
particles created changes with different slider setings.

NetLogo Tutorial Series: Introduction to Diffusion-limited Aggregation 21

Figure 15 – NetLogo world after setup, with num-particles = 500.

Adding code for particle movement

1. In the Code tab, add the code shown in Listing 2 after your setup procedure. (Make
sure not to start typing a new procedure before the end keyword of the previous
procedure; that will cause a syntax error.)

There are a few important points to note in this code:

• The new code is split into two procedures, go and move. Just as we followed the
convention of naming the initialization procedure setup, we will follow the
convention of naming our main model execution procedure go.

• Since our particles will eventually be performing two fundamentally distinct
operations – moving, and then joining the aggregate when they get close enough
to it – we'll implement those operations in separate procedures, and invoke both
of them from the go procedure. For now, we've only implemented the
movement, but we'll be adding the aggregation soon enough.

• In the move procedure, the current particle selects a compass direction at random
from a list of 4 directions, corresponding to north (up), east (right), south (down),

22 NetLogo Tutorial Series: Introduction to Diffusion-limited Aggregation

and west (left). It assigns the selected to direction to its heading variable; seting
this variable is one of a few different methods for changing the direction that the
turtle is facing. Finally, the turtle moves forward one step. This type of
movement is known as a “2-dimensional random walk”; when repeated a large
number of times, a random walk approximates Brownian motion, the random
motion of particles in a fluid.

2. Use the Check buton to verify that your code is correctly typed; correct any flagged
errors.

to go
 ask particles [
 move
]
 tick
end

to move
 set heading (one-of [0 90 180 270])
 forward 1
end

Listing 2 – go and move procedures for particle movement.

Creating a button to test particle movement

1. Create another buton in the Interface tab.

2. In the Buton dialog window, set the following values:

• Agent(s): observer

• Forever: checked

• Disable until ticks start: checked

• Commands
go

• Display name: (optional)

• Action key: (optional)

3. Verify your setings against Figure 16 (again, remember that Display name and
Action key are optional), and click OK to create your Go buton.

4. Save your model.

5. Test particle movement in your model by clicking the Setup buton to create
particles, and the Go buton to set them in motion. Verify that all particles remain in

NetLogo Tutorial Series: Introduction to Diffusion-limited Aggregation 23

motion until you click the Go buton again. (If every particle only moves once, and
the Go buton doesn't stay down, edit the setings of the Go buton by right-clicking
on it, and selecting Edit… from the context menu that appears. In the Button setings
dialog window, make sure that the Forever checkbox is checked.)

Figure 16 – Go button settings.

Adding code for particle aggregation

Now we'll add the code for particle aggregation. This will consist of a new procedure,
and an additional line of code in an existing procedure (go). Because of this, the code in
Error: Reference source not found includes both the existing and the new procedure.
However, the code writen previously is shown in gray italic type. Do not write the
code displayed in italics! Instead, use it to locate the appropriate place to add the new
code.

1. In the Code tab, add the non-italic code shown in Listing 3 to the code of your
model. Pay close atention to the line of code added to the go procedure: it must be
added after the move command, but before the close of the square brackets in which
the move command is contained. The aggregate procedure may be writen
immediately after the go procedure, and before the move procedure, or added at the
botom of the code.

Again, there are some important points to note in the new code:

• neighbors4 reports the set of patches directly (but not diagonally) adjacent to the
current patch. If it's used by a turtle (as it is in this case), the current patch is the
patch on which the turtle is standing.

24 NetLogo Tutorial Series: Introduction to Diffusion-limited Aggregation

• with is a very powerful general purpose set-oriented reporter, used to construct
and report a subset of a specified set, where every member of the subset satisfies
some condition of interest. In this case, we're using it to get the subset of patches
in neighbors4 whose pcolor (patch color) variable has a value that's not equal to
black. (Alternatively, we could check for a pcolor equal to white, since that's the
color we're using for the aggregate. However, if we later decided to change the
color of the aggregate – or even have multiple aggregates of different colors
forming at the same time – we'd have to remember to change any other
references to white in our code. With the approach we're using now, as long as
we keep black as the default patch color, we won't have to remember to change
details like that in our code as our model evolves.)

• Because NetLogo allows procedure and variable names to include many non-
alphanumeric characters, arithmetic operators such as +, -, /, *, ^, etc. and logical
operators such as =, !=, >, <. >=, <=, etc. must have white space before and after
them, to be recognized as operators. The only exceptions are for - (the minus
sign): When it precedes a numeric literal with no intervening white space, it's
treated as part of the literal value (making the literal value negative); when it
follows a left parenthesis with no intervening white space, but is then followed
by white space, it is treated as a unary negation operator for the following term
(whether literal or symbolic).

• Because we'll be referring to this subset of patches more than once, we're using
let to declare the local variable aggregate-neighbors, and assigning the subset
to that variable.

• We're using the any? reporter to check aggregate-neighbors has any elements.
If so, we can safely conclude that the current particle is adjacent to the aggregate,
and should be added to it.

• To add the particle to the aggregate, we select one-of aggregate-neighbors at
random, and use of to have the selected patch report to the particle its pcolor;
the particle then changes the pcolor of the patch it's standing on to the reported
color. Finally, the particle moves to a random location, as if it were a new particle
in the latice.

2. Check your code syntax; correct any flagged errors.

NetLogo Tutorial Series: Introduction to Diffusion-limited Aggregation 25

to go
 ask particles [
 move
 aggregate
]
 tick
end

to aggregate
 let aggregate-neighbors (neighbors4 with [pcolor != black])
 if (any? aggregate-neighbors) [
 set pcolor ([pcolor] of one-of aggregate-neighbors)
 setxy random-pxcor random-pycor
]
end

Listing 3 – aggregate procedure definition and invocation.

Test your basic DLA model

You're now in condition to test the not only the movement of particles, but also the
addition of particles to the aggregate structure, when their random walks lead them to
it. Since you've already created a buton that invokes the go procedure, and since you've
modified the go procedure to invoke the new aggregate procedure, you won't need to
create any new user interface elements to test your model.

1. Save the model.

In general, it's important to save before testing any major changes to the main
simulation logic of a model. It's easy to write code – unintentionally – that causes
NetLogo to become unresponsive. We can often use the Tools/Halt menu command
to break out of such a condition, but this doesn't always work: occasionally it's
necessary to kill the NetLogo process altogether. If we haven't saved our latest
changes when we do that, we'll lose some of our work.

2. Click Setup, then Go, to create the particles and set them in motion. Before too long,
you should see the white spot in the center of the world – i.e. the aggregate – expand
from a single square to an irregular clump of patches, as randomly walking particles
collide with and join the aggregate.

Notice the speed slider in the toolbar of the Interface tab – set by default to normal
speed. Sliding it to the right causes NetLogo to wait a shorter time – and update the
screen less frequently – when executing the tick command. With your DLA model,
you'll generally want to set the speed slider close to its maximum value. (At the
maximum speed, the display will only be updated every few seconds, and NetLogo
will try to process as many iterations of go as possible between screen updates.)

26 NetLogo Tutorial Series: Introduction to Diffusion-limited Aggregation

You can also slide the speed slider far to the left, to slow your model down. This will
help if it appears that your model isn't doing what you expect: by observing the
model run very slowly, you'll be able to see if the particles are moving in an
unexpected fashion, or if particles aren't correctly joining the aggregate when they
are directly adjacent to some portion of it.

Monitoring the size of the aggregate

We haven't (yet) included any code in the model for halting execution automatically
when the aggregate grows to some critical size. But even without that, we can easily
monitor the size of the aggregate as it grows, by adding a display of the number of
patches that are part of the aggregate.

1. In the Interface tab, use the menu of interface elements to add a monitor.

2. In the Monitor dialog window, set the following values:

• Reporter:
count patches with [pcolor != black]

• Display name: Aggregate Size

• Decimal places: 0

• Font size: 11

3. After checking your setings against Figure 17, click OK.

4. Save your model.

5. Run the model as usual, watching the value displayed by Aggregate Size change as
the number of patches in the aggregate increases.

Figure 17 – Aggregate Size monitor settings.

NetLogo Tutorial Series: Introduction to Diffusion-limited Aggregation 27

This page intentionally left blank.

28 NetLogo Tutorial Series: Introduction to Diffusion-limited Aggregation

Extending the basic implementation

What's missing?

As noted in “General specifications” (p. 13), we've left a few elements out of our model
that were part of Witen & Sander's original DLA definition.

As it turns out, it's fairly common for DLA implementations to include multiple
particles moving simultaneously (within reason, of course – the fundamental theory
assumes this number remains fairly low), rather than waiting for each particle to join
the aggregate before adding the next particle to the latice. So we won't change that
aspect of our model.

On the other hand, we will address the likelihood of particles entering the latice very
close to the existing aggregate; we'll modify our code to have particles enter the latice
(and re-enter, after adding a patch to the aggregate) far from the center. Additionally,
we'll add a stopping condition – code that halts execution automatically when a critical
threshold is reached. In this case, we'll stop the model when any part of the aggregate is
more than a certain distance away from the center of the world (the location of the
seed).

NetLogo concepts and vocabulary

There's not much we need to add to our vocabulary for these changes – but the new
keywords and primitives are useful in a wide variety of models – and essentially in
quite a few.

Keyword Declaration or definition purpose
globals [variables] Declares global variables. There can be only one globals

declaration in the code of a model file, but we can include
multiple variables inside the brackets, as long as they're
separated by white space.

globals must appear in the code before any procedure
definitions; it can appear before or after breed declarations.

Table 6 – Additional keywords used in extended implementation of DLA.

NetLogo Tutorial Series: Introduction to Diffusion-limited Aggregation 29

Command primitive Action Applicable agents
stop Halts execution of the current procedure,

returning immediately to the point of
invocation.

If the halted procedure was invoked
directly by a buton with the forever
option checked, and stop was executed
by the same agent that started execution
of the procedure (i.e. not within an ask
command block in the procedure),
execution of that buton's commands
stops immediately.

observer, turtles,
patches, links

move-to agent The current turtle agent moves to the
identical (X, Y) location as agent. If
agent is a patch, then the turtle moves to
the exact center of that patch.

turtles

Table 7 – Additional command primitives used in extended implementation of DLA.

Reporter primitive Reports …
distancexy x y … the Euclidean distance between the current agent and the

point by (x, y).

This reporter may not be used by the observer or a link agent,
since neither of these has a location.

min-pxcor
max-pxcor
min-pycor
max-pycor

… the minimum and maximum integral values along the X
and Y coordinate axes, respectively, of the NetLogo world.

The values reported are the same values specified in the
Model Settings dialog window; these reporters are very
useful for building without hard-coded world dimensions in
the code.

patches … the agentset containing all patches in the NetLogo world.
Table 8 – Additional reporter primitives used in extended implementation of DLA.

30 NetLogo Tutorial Series: Introduction to Diffusion-limited Aggregation

Changing the code for particle placement and adding the stop condition

To reduce the likelihood that a particle enters or re-enters the latice very close to some
part of the aggregate, we'll place each particle a distance of just under the half the width
of the world (or more) from the center of the latice. To make the code for this as simple
as possible, we'll make some assumption about the shape (but not the size) of the world,
and the location of the origin.

Specifically, we'll assume the following:

• The world is square – that is, its height and width are equal.

• The origin of the coordinate system (which is also the location of the seed of the
aggregate) is at the center of the world.

While it's a good idea to avoid making too many assumptions about the dimensions of
the world – and especially to avoid embedding many such assumptions in our code –
these are reasonably safe assumptions to make in this case.

Because the origin is assumed to be at the center of the world, we can conclude that the
integral distance from the origin to the patches located on the X-axis, at its minimum
and maximum values, is max-pxcor. Further, because the world is assumed to be
square, the distance from the origin to each the patches at the extremes of the Y-axis is
also max-pxcor. If, when placing the particles randomly, we make sure that each is at a
distance from the origin of at least max-pxcor, they will thus be located (immediately
after placement) somewhere along the edges and/or close to the corners. This will be
sufficient for our purposes.

1. Use the File/Save As… menu command to save your model under a new name.

Saving under a new name is highly recommended before making significant
changes to a working (even if incomplete) model. Doing this ensures that even if you
make an irrecoverable mistake with the changes to the new version, you haven't lost
the work done previously.

2. Make the changes shown in Listing 4 to the setup, go, and aggregate procedures,
and add the globals declaration block.

Note that this code listing once again shows previously writen code (not including
the breed declaration or the move procedure, which are unchanged) in gray italic
type. This time, however, a couple of those previous lines must be deleted; these are
displayed in strike-through type. The new code will not function correctly without
removing these struck-through lines from the code.

NetLogo Tutorial Series: Introduction to Diffusion-limited Aggregation 31

Even though we're only adding a few lines, there are important features to notice:

• Notice the global variable named limit-reached?, and that when this variable is
referenced in the code, the question mark is included as part of the variable
name. This follows a widely used Logo convention of using a question mark as
the final character of a variable name to indicate that the variable is intended to
hold a Boolean value. Keep in mind that NetLogo itself doesn't care how we
name our variables: we can assign any kind of value to any variable we declare,
and NetLogo will go along without complaint. Conventions like these are simply
for the purpose of making code more self-documenting – and thus, easier to
understand and maintain.

• Note that in the setup procedure, values are being assigned to the global
variables after the clear-all command is executed. That order is important: If
we reverse it, any values we assign to those variables will be lost when clear-
all is executed.

• In setup, we're assign a subset of patches to the entry-patches variable –
namely the subset that is at a distance of at least max-pxcor from the origin. We
compute this subset once, and then use it from then on – selecting individual
patches from it at random (using one-of), and using those patches as
destinations for the move-to command when placing particles on the latice.

• In the aggregate procedure, we've added code to check the distance of the patch
being added to the aggregate; if that distance is greater than 90% of max-pxcor,
then we conclude that the aggregate has grown close enough to the boundaries
of the latice that we should stop execution. Since a particle can't stop a buton
that's being executed by the observer, our approach is to have the particle set
limit-reached? to true. The next time the observer executes go, it checks the
value of limit-reached?. Since that value is now true, the observer executes the
stop command, exiting the go procedure. Finally, since go was invoked directly
from a buton with the forever option checked, the stop command also
terminates execution of that buton.

3. As usual, check and fix (if needed) your code changes, and save your model.

4. Now, when you run the model, you should see all particles starting out on the edges
or near the corners of the world. If we slow down the model execution, and watch
for a specific particle to reach the aggregate, we'll also see that particle being
relocated in the same fashion (reducing the number of agents will also help in
verifying this).

To verify that the stopping condition is in force, test the model at maximum speed,

32 NetLogo Tutorial Series: Introduction to Diffusion-limited Aggregation

with the maximum number of particles. Execution should stop automatically by the
time the value shown by the Aggregate Size monitor reaches 2,000 or so; at that
time, you should see something like the aggregate in Figure 18.

globals [
 limit-reached?
 entry-patches
]

to setup
 clear-all
 set limit-reached? false
 set entry-patches (patches with [distancexy 0 0 >= max-pxcor])
 ask (patch 0 0) [
 set pcolor white
]
 create-particles num-particles [
 set color green
 set shape "circle"
 setxy random-pxcor random-pycor
 move-to (one-of entry-patches)
]
 reset-ticks
end

to go
 if limit-reached? [
 stop
]
 ask particles [
 move
 aggregate
]
 tick
end

to aggregate
 let aggregate-neighbors (neighbors4 with [pcolor != black])
 if (any? aggregate-neighbors) [
 set pcolor ([pcolor] of one-of aggregate-neighbors)
 setxy random-pxcor random-pycor
 if (distancexy 0 0 > 0.9 * max-pxcor) [
 set limit-reached? true
]
 move-to (one-of entry-patches)
]
end

Listing 4 – globals block, setup, go & aggregate procedure changes for extended implementation.

NetLogo Tutorial Series: Introduction to Diffusion-limited Aggregation 33

Figure 18 – Extended implementation, after reaching stopping condition.

Questions

1. Can you think of any systems – chemical, biological, social, etc. - that produce
structures resembling those produced by your DLA so far?

2. Without worrying about the specific NetLogo code required, are there any basic
functional changes that could be made to your DLA, to make it model more closely
the processes you thought of for #1?

34 NetLogo Tutorial Series: Introduction to Diffusion-limited Aggregation

Aggregation along a line

Description

So far, we've been looking at an aggregate that starts with a single seed particle. Among
other variants, we can also use DLA to describe and model processes in which
aggregation occurs on a surface, or – in 2 dimensions – along a line.

In a simple model of such a process, we could start with seed particles occupying an
entire row or column of the latice. In fact, the only things we would absolutely need to
change in our current model to accommodate this are the code for creating the initial
seed(s), and the code for placing the particles on the latice. In addition, we might want
to treat the line along which aggregation begins as one-sided, instead of 2-sided; to do
this, we would turn off wrapping in one direction, and create the line of seeds along a
non-wrapping edge of the world.

In fact, we're going to do all of those things now. But this time, there will be fewer step-
by-step instructions; you've already been introduced to almost all of the keywords,
primitives, and predefined variables that you'll need for this version of the model.

NetLogo concepts and vocabulary

The only new elements needed for this model are predefined, read-only variables of
every patch agent, holding that patch's (X, Y) coordination location, and a couple of
reporter primitives giving the overall world dimensions. (Actually, we won't be using
all of these, but some are included for completeness.)

Predefined agent variable Contains
pxcor
pycor

Integer X- and Y-coordinates (respectively) of the current
patch.

Table 9 – Additional predefined agent variables used in aggregation along a line.

Reporter primitive Reports …
world-width
world-height

… the width and height (respectively) of the NetLogo
world. These are always integer values.

Table 10 – Additional reporter primitives used in aggregation along a line.

NetLogo Tutorial Series: Introduction to Diffusion-limited Aggregation 35

Changing the world size and topology

1. As we did before the last set of changes, start by saving your model under a new
name.

2. Open the Model Settings dialog (with the Settings… buton), and change just the
following parameters (all others should remain unchanged):

• max-pxcor: 137

• World wraps vertically: not checked (Note how the colors and line paterns
along the edges of the small square representing the world change – indicating
that the horizontal edges along the top and botom of the world are now
impassable – when you uncheck this option.)

3. Review the setings, to make sure that all of them are as intended; then click OK.

You should now have a NetLogo world that is wider than it is tall. The height (in
terms of patches, and in terms of the space occupied on the screen) should be
unchanged from the previous model.

Changing the initial placement of seeds and particles

Up to this point, in our setup procedure, we ask a single patch to set it's pcolor to
white; this patch is the seed of the aggregate. Now we need to change this. Specifically,
we're going to ask all of the patches along the botom row of the world to change their
pcolor values to white.

We've seen how we can ask all of the agents in a turtle breed (e.g. particles) to execute
a block of commands. We've also seen how we can use the with reporter to construct a
subset of a given agentset, based on a predicate condition: this is how we identified the
subset of a particle's neighboring patches that were already included in the aggregate;
it's also how we identified the set of patches that were sufficiently far from the origin to
serve as entry points into the latice for particle placement.

Also, in our last set of changes, we changed the way that members of the particles
breed were initially placed on the latice, in the setup procedure. We won't change the
code that places the particles, but we will change the set of patches that the placement
locations are randomly selected from.

1. Review the assignment of a value to entry-patches in the setup procedure. Instead
of selecting patches that are at least a certain distance from the origin, can you think
of a way to select the patches that are in the top row of patches in the world? (Hint:
Compare the pycor patch variable to max-pycor.)

36 NetLogo Tutorial Series: Introduction to Diffusion-limited Aggregation

2. Review the ask command currently used in the setup procedure. Can you think of a
suitable condition that you could use with the with reporter, to get the subset of
patches making up the entire botom row of patches in the world? (Hint: Compare
the pycor patch variable to min-pycor.)

3. Try to make the necessary changes to the setup procedure on your own. If you get
stuck, or want to check your solution code before testing it, compare your setup
procedure to that shown in Listing 5. Keep in mind that there are multiple
approaches possible. If your approach is implemented with different code, it doesn't
mean it's wrong: Test it out and see!

This listing (which includes only the setup procedure) again shows code previously
writen in gray italics, as well as strike-through type for lines to be removed.

4. Check, save, and test your changes – but just using the Setup buton; we need to
change a few more lines in the aggregate procedure before we can use the Go
buton again.

When you click the Setup buton, you should see a broken green line along the top
of the world; these are particles randomly placed in the top row of patches.

Much harder to see is the row of white patches along the botom of the world; this is
the row of seed patches.

to setup
 clear-all
 set limit-reached? false
 set entry-patches (patches with [distancexy 0 0 >= max-pxcor]
 set entry-patches (patches with [pycor = max-pycor])
 ask (patch 0 0) [
 ask (patches with [pycor = min-pycor]) [
 set pcolor white
]
 create-particles num-particles [
 set color green
 set shape "circle"
 move-to (one-of entry-patches)
]
 reset-ticks
end

Listing 5 – setup procedure changes for aggregation along a line.

NetLogo Tutorial Series: Introduction to Diffusion-limited Aggregation 37

Changing the stopping condition

At the moment, our stopping condition code looks at the distance of the new aggregate
patch from the origin, seting the variable limit-reached? to true if the distance is
greater than a critical value. However, now that we'll be building our aggregates up
from a line at the botom of the world, rather than out from a seed at the origin, that
condition no longer makes sense. Instead, we should base our test on the height of the
aggregate above the botom of the world.

1. Modify the condition of the if command in aggregate, to compare the current
patch's height above the botom row of patches to the overall height of the world. If
the former is greater than 90% of the later, set the value of limit-reached? to true.
(Hint: pycor – min-pycor gives the height of the current patch above the botom
row of patches.)

2. When you're ready – or if you get stuck and need some concrete clues – review your
changes to the aggregate procedure against those shown in Listing 6. Again, this is
just one approach; there are definitely alternatives that work just as well.

3. Check, save, and test your code. Verifying that the stopping condition works
correctly will take patience: Because all of the particles are starting so far from the
aggregate, it takes a long time for the particles to reach and expand the aggregate.

Eventually, you should see branching tree structures climbing from the botom of
the world, similar to those in Figure 19.

to setup
 clear-all
 set limit-reached? false
 set entry-patches (patches with [distancexy 0 0 >= max-pxcor]
 set entry-patches (patches with [pycor = max-pycor])
 ask (patch 0 0) [
 ask (patches with [pycor = min-pycor]) [
 set pcolor white
]
 create-particles num-particles [
 set color green
 set shape "circle"
 move-to (one-of entry-patches)
]
 reset-ticks
end

Listing 6 – aggregate procedure changes for aggregation along a line.

38 NetLogo Tutorial Series: Introduction to Diffusion-limited Aggregation

Figure 19 – Aggregation along a line.

Questions

1. What additional systems (beyond those you came up with previously) does this
model resemble?

2. Can you think of any real-world processes that don't operate by simple aggregation,
but in which aggregation (and specifically, DLA) might serve as a reasonable proxy
for the actual mechanisms at work?

NetLogo Tutorial Series: Introduction to Diffusion-limited Aggregation 39

This page intentionally left blank.

40 NetLogo Tutorial Series: Introduction to Diffusion-limited Aggregation

Possible next steps

You've seen how the basic DLA model works, and experimented with a variation for
producing aggregation along a line. There are a few directions for simple change or
enhancement that are worth exploring. When you have time, pick one or more of the
following, and try to implement it. (Don't forget: When using a previous model as a
starting point, don't forget to save that model under a new name before making
changes!)

1. Instead of looking only at the directly adjacent neighboring patches for aggregation,
include the diagonally adjacent patches as well. (Hint: While the patch set reported
by neighbor4 includes only the patches directly adjacent to the current patch,
neighbors also includes diagonally adjacent patches.)

2. Experiment with multiple distinct seeds of different colors. In doing so, see if you
can find a way to place these seeds randomly, but within a certain distance from the
origin. Also, note that currently, your code instructs a particle to pick one of its
aggregate neighbors at random when selecting a color for the patch; for an advanced
exercise, when a particle has multiple aggregates (of different colors) in its
neighborhood, select the majority color among the aggregate patches in the
neighborhood. (Hint: Assuming we have a variable called aggregate-neighbors, as
currently defined in the code, [pcolor] of aggregate-neighbors reports a list of
colors of the members of aggregate-neighbors; the mode reporter can be used to
find the most common item in a list.)

3. Currently, particles that reach a patch adjacent to the aggregate add to the aggregate
(i.e. change the color of the current patch to that of the aggregate) unconditionally.
Will we get different results if the particle adds to the aggregate according to a
configurable probability? (Hint: random-float 1 reports a random value between 0
and 1.) For an advanced exercise, consider using BehaviorSpace to explore the effect
of this parameter on the density of the aggregate.

4. Our particles currently move in a random walk fashion. This is a stationary process:
over time, there's no specific direction in which they're most likely to drift. Can you
modify the aggregation-on-a-line model, so that the particles are more likely to drift
down over time? In fact, there's a simply way to modify the code so that the
probability of stepping up (i.e. in the 0° direction) is zero, but the probability of
selecting any of the other three directions remains equal; can you make that change?

5. Currently, particle movement and aggregation takes place on a latice. Modify the
setup, move, and aggregate procedures to remove the le atice constraint. Without
the latice, how should a particle detect that it is close to a portion of the latice?

NetLogo Tutorial Series: Introduction to Diffusion-limited Aggregation 41

(Hints: right angle, left angle, set heading angle, and face agent can all be
used to turn a turtle; random-float 360 can be used to compute a random floating-
point value between 0 and 360; agentset in-radius range reports the subset of
agentset that is located within range of the current agent.)

42 NetLogo Tutorial Series: Introduction to Diffusion-limited Aggregation

References

[1] B. Stanislaus, “Sierpinski triangle.svg”, 21 Oct. 2007. [Online]. Available:
htps://upload.wikimedia.org/wikipedia/commons/4/45/Sierpinski_triangle.svg.
[Accessed: 5 Oct. 2015].

[2] Fibonacci, “Koch curve.svg”, 19 May 2007. [Online]. Available:
htps://upload.wikimedia.org/wikipedia/commons/5/5d/Koch_curve.svg.
[Accessed: 5 Oct. 2015].

[3] K. R.. Johnson, “DLA Cluster.jpg”, 19 May 2006. [Online]. Available:
htps://upload.wikimedia.org/wikipedia/commons/b/b8/DLA_Cluster.JPG.
[Accessed: 5 Oct. 2015].

[4] J. Sullivan, “Fractal Broccoli.jpg”, 21 Aug. 2004. [Online]. Available:
htps://upload.wikimedia.org/wikipedia/commons/4/4f/Fractal_Broccoli.jpg.
[Accessed: 8 Oct. 2015].

[5] A. Heinemann, “Thorax Lung 3d (2).jpg”, 5 Oct. 2005. [Online]. Available:
htps://upload.wikimedia.org/wikipedia/commons/7/77/Thorax_Lung_3d_
%282%29.jpg. [Accessed: 8 Oct. 2015]

[6] J. Hubicka, T. Nash, XaoS, 2008. [Online]. Available:
htp://matek.hu/xaos/doku.php. [Accessed: 5 Oct. 2015].

[7] U. Wilensky, NetLogo, 2015. [Online]. Available:
htp://ccl.northwestern.edu/netlogo/. Center for Connected Learning and
Computer-Based Modeling, Northwestern University. Evanston, IL. [Accessed: 5
Oct. 2015].

[8] B. Mandelbrot, “How long is the coast of Britain? Statistical self-similarity and
fractional dimension”, Science, vol. 156, no. 3775, pp. 636-638, May 1967.

[9] T. L. Witen, Jr., L. M. Sander, “Diffusion-Limited Aggregation, a Kinetic Critical
Phenomenon”, Physical Review Letters, vol. 47, no. 9, pp. 1400-1403, Nov. 1981.

[10] M. Baty, P.Longley, S. Fotheringham, “Urban growth and form: scaling, fractal
geometry, and diffusion-limited aggregation”, Environment and Planning A, vol.
21, no. 11, pp. 1447-1472, Nov. 1989.

[11] A. S. Fotheringham, M. Baty, P.Longley, “Diffusion-Limited Aggregation and
the Fractal Nature of Urban Growth”, Papers of the Regional Science Association,
vol. 67, no. 1, pp. 55-69, Dec. 1989.

NetLogo Tutorial Series: Introduction to Diffusion-limited Aggregation 43

http://ccl.northwestern.edu/netlogo/
http://matek.hu/xaos/doku.php
https://upload.wikimedia.org/wikipedia/commons/7/77/Thorax_Lung_3d_(2).jpg
https://upload.wikimedia.org/wikipedia/commons/7/77/Thorax_Lung_3d_(2).jpg
https://upload.wikimedia.org/wikipedia/commons/4/4f/Fractal_Broccoli.jpg
https://upload.wikimedia.org/wikipedia/commons/5/5d/Koch_curve.svg
https://en.wikipedia.org/wiki/User:Fibonacci
https://upload.wikimedia.org/wikipedia/commons/4/45/Sierpinski_triangle.svg

[12] G. Greenfield, “Evolved Diffusion Limited Aggregation Compositions”,
Applications of Evolutionary Computing, vol. 4974, pp. 402-411, Jan. 2008.

[13] G. Greenfield, “Connectivity and a Diffusion Limited Aggregation Digital Image
Magnification Technique”, Journal for Geometry and Graphics, vol. 13, no. 2, pp.
187-194, Jan. 2009.

[14] L. M. Sander, “Diffusion-Limited Aggregation: A Kinetic Critical Phenomenon?”,
Contemporary Physics, vol. 41, no. 4, pp. 203-218, Jul. 2000.

[15] N. Bennet, “NetLogo Tutorial Series: Introduction and Core Concepts“, Oct.
2015. [Online]. Available: htp://www.g-r-c.com/tutorials/netlogo/Core
%20Concepts%20(English).pdf. [Accessed: 5 Oct. 2015].

[16] N. Bennet, “NetLogo Tutorial Series: Set Theory Concepts and Applications“,
Oct. 2015. [Online]. Available: htp://www.g-r-c.com/tutorials/netlogo/Set
%20Theory%20Concepts%20and%20Applications.pdf. [Accessed: 5 Oct. 2015].

[17] U. Wilensky, “NetLogo Dictionary”, NetLogo User Manual, 1 Oct. 2015. [Online].
Available: htp://ccl.northwestern.edu/netlogo/docs/dictionary.html. Center for
Connected Learning and Computer-Based Modeling, Northwestern University,
Evanston, IL. [Accessed: 5 Oct. 2015].

44 NetLogo Tutorial Series: Introduction to Diffusion-limited Aggregation

http://ccl.northwestern.edu/netlogo/docs/dictionary.html
http://www.g-r-c.com/tutorials/netlogo/Set%20Theory%20Concepts%20and%20Applications.pdf
http://www.g-r-c.com/tutorials/netlogo/Set%20Theory%20Concepts%20and%20Applications.pdf
http://www.g-r-c.com/tutorials/netlogo/Core%20Concepts%20(English).pdf
http://www.g-r-c.com/tutorials/netlogo/Core%20Concepts%20(English).pdf

Appendix: Source code listings

Basic implementation

breed [particles particle]

to setup
 clear-all
 ask patch 0 0 [
 set pcolor white
]
 create-particles num-particles [
 set color green
 set shape "circle"
 setxy random-pxcor random-pycor
]
 reset-ticks
end

to go
 ask particles [
 move
 aggregate
]
 tick
end

to move
 set heading (one-of [0 90 180 270])
 forward 1
end

to aggregate
 let aggregate-neighbors (neighbors4 with [pcolor != black])
 if (any? aggregate-neighbors) [
 set pcolor ([pcolor] of one-of aggregate-neighbors)
 setxy random-pxcor random-pycor
]
end

NetLogo Tutorial Series: Introduction to Diffusion-limited Aggregation 45

Extended implementation

breed [particles particle]

globals [
 limit-reached?
 entry-patches
]

to setup
 clear-all
 set limit-reached? false
 set entry-patches (patches with [distancexy 0 0 >= max-pxcor])
 ask patch 0 0 [
 set pcolor white
]
 create-particles num-particles [
 set color green
 set shape "circle"
 move-to (one-of entry-patches)
]
 reset-ticks
end

to go
 if limit-reached? [
 stop
]
 ask particles [
 move
 aggregate
]
 tick
end

to move
 set heading (one-of [0 90 180 270])
 forward 1
end

to aggregate
 let aggregate-neighbors (neighbors4 with [pcolor != black])
 if (any? aggregate-neighbors) [
 set pcolor ([pcolor] of one-of aggregate-neighbors)
 if (distancexy 0 0 > 0.9 * max-pxcor) [
 set limit-reached? true
]
 move-to (one-of entry-patches)
]
end

46 NetLogo Tutorial Series: Introduction to Diffusion-limited Aggregation

Aggregation along a line

breed [particles particle]

globals [
 limit-reached?
 entry-patches
]

to setup
 clear-all
 set limit-reached? false
 set entry-patches (patches with [pycor = max-pycor])
 ask (patches with [pycor = min-pycor]) [
 set pcolor white
]
 create-particles num-particles [
 set color green
 set shape "circle"
 move-to (one-of entry-patches)
]
 reset-ticks
end

to go
 if limit-reached? [
 stop
]
 ask particles [
 move
 aggregate
]
 tick
end

to move
 set heading (one-of [0 90 180 270])
 forward 1
end

to aggregate
 let aggregate-neighbors (neighbors4 with [pcolor != black])
 if (any? aggregate-neighbors) [
 set pcolor ([pcolor] of one-of aggregate-neighbors)
 if (pycor - min-pycor > 0.9 * world-height) [
 set limit-reached? true
]
 move-to (one-of entry-patches)
]
end

NetLogo Tutorial Series: Introduction to Diffusion-limited Aggregation 47

	NetLogo Tutorial Series: Introduction to Diffusion-limited Aggregation
	Fractals
	Self-similar patterns
	Statistical self-similarity and random fractals
	Fractal dimension

	Diffusion-limited aggregation
	Definition
	Development and use

	Basic NetLogo implementation
	General specifications
	NetLogo concepts and vocabulary
	Configuring the NetLogo world
	Creating a slider for the number of particles
	Writing code to initialize the model
	Creating a button to invoke the setup procedure
	Saving and testing your model so far
	Adding code for particle movement
	Creating a button to test particle movement
	Adding code for particle aggregation
	Test your basic DLA model
	Monitoring the size of the aggregate

	Extending the basic implementation
	What's missing?
	NetLogo concepts and vocabulary
	Changing the code for particle placement and adding the stop condition
	Questions

	Aggregation along a line
	Description
	NetLogo concepts and vocabulary
	Changing the world size and topology
	Changing the initial placement of seeds and particles
	Changing the stopping condition
	Questions

	Possible next steps
	References
	Appendix: Source code listings
	Basic implementation
	Extended implementation
	Aggregation along a line

