
Algorithms in Java and Python:
The Triangle Route Problem

Nicholas Bennett
Grass Roots Consulting

nickbenn@g-r-c.com

17 October 2010

Copyright and License Information

Copyright © 2010, Nicholas Bennett. All rights reserved.

“Algorithms in Java and Python: The Triangle Route Problem” by Nicholas Bennett is
licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0
Unported License. Permissions beyond the scope of this license may be available; for
more information, contact nickbenn@g-r-c.com.

Redistribution and use of accompanying program code in source and binary forms,
with or without modification, are permitted provided that the following conditions are
met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

This software is provided by Nicholas Bennett "as is" and any express or implied
warranties, including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose are disclaimed. In no event shall Nicholas Bennett be
liable for any direct, indirect, incidental, special, exemplary, or consequential damages
(including, but not limited to, procurement of substitute goods or services; loss of use,
data, or profits; or business interruption) however caused and on any theory of liability,
whether in contract, strict liability, or tort (including negligence or otherwise) arising in
any way out of the use of this software, even if advised of the possibility of such
damage.

ii Algorithms in Java and Python: The Triangle Route Problem

mailto:nickbenn@g-r-c.com
mailto:nickbenn@g-r-c.com
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.g-r-c.com/tutorials/triangle/
http://creativecommons.org/licenses/by-nc-sa/3.0/

Table of Contents
Copyright and License Information...ii
1. Introduction...1

Definition and a simple example...1
Pencil-and-paper task 1: Find the minimum-cost triangle route...2
Solution..2
Too many routes?...2
Discussion: Approaches for solving larger cases...3

2. A More Efficient Method...5
Solving from the bottom up..5
Bottom-up algorithm for finding the least-cost triangle route..7
Pencil-and-paper task 2: Using the bottom-up algorithm ...8
Dynamic programming...9
What's it good for?..10

3. General Implementation Features..11
Introduction...11
Data layout..11
Development Environment...11

4. Java Implementation...13
Open the Java project...13
Java task 1: setupRoutes..16
Java task 2: backtrackRoutes...20
Java task 3: solve...22
Java task 4: Test the program..24

5. Python Implementation...27
Open the Python project..27
Python task 1: setup_routes..29
Python task 2: backtrack_routes...31
Python task 3: solve..34
Python task 4: Test the program...35

6. Conclusion...39
Summary discussion..39
Online resources for additional study and practice..40

References..41
Acknowledgements..42
Appendix A — Solution to Pencil-and-paper Task 2..43
Appendix B — Pseudocode for Least-cost Triangle Route Algorithm...45
Appendix C — Java Implementation...47
Appendix D — Python Implementation...55

Algorithms in Java and Python: The Triangle Route Problem iii

This page intentionally left blank.

iv Algorithms in Java and Python: The Triangle Route Problem

1. Introduction

In this lesson, we'll develop an efficient method for finding the least expensive route
over a somewhat peculiarly shaped network. Then, we'll add an implementation of that
method to a program already written in Java, and to one written in Python. Finally,
we'll use the completed programs to solve an instance of the routing problem that –
because of its magnitude – would be impossible to solve without an efficient approach.

Definition and a simple example

In a triangular arrangement of numbers, such as the one in Figure 1, a triangle route is a
path starting at the apex (top) and ending at the base, moving to an adjacent number in
the next row down at each step. In this case, all routes start with 3, then move either to 6
or 5 in the second row. From 6 in the second row, the next step would be to 5 or 4 in the
third row; from 5 in the second row, the valid steps are to 4 or 3 in the third row.

3

6 5

5 4 3

5 6 8 9

Figure 1 - Example triangular arrangement of numbers

Obviously, moving from the apex to the base of Figure 1 requires 3 steps, and any route
will touch 4 numbers along the way (including the starting and ending numbers). Since
we have 2 alternatives at each step, and there are 3 steps required, the number of
possible routes is 2×2×2 = 23 = 8 . If we add a row to the triangle, the number of steps
increases by 1, and the number of possible routes is doubled.

To solve the triangle route problem, we need to find the triangle route with the smallest
sum of the numbers along the route, including the starting and ending points. This is an
example of a combinatorial optimization problem.1 One way to solve the problem is to
calculate the sum for every possible route, and select the route with the smallest sum.
This approach – examining every possible solution to a problem, to find the best one –
is called an exhaustive search.

1 In this problem, the decision space (the set of all possible steps that can be taken) is discrete – i.e. a
solution isn't allowed to include fractional or partial decision values. This type of problem – finding
the best combination of decisions in a discrete decision space – is called a combinatorial optimization
problem. Combinatorial optimization problems appear in many real-world situations, but they're
especially common in resource allocation and network problems.

Algorithms in Java and Python: The Triangle Route Problem 1

Pencil-and-paper task 1: Find the minimum-cost triangle route

Using any method you like, find the triangle route with the smallest sum for the data
shown in Figure 1.2

Solution

You probably didn't have much trouble solving the problem. Even if we do an
exhaustive search of all routes, it's doesn't take long to see the lowest sum is 18, along
the following route:

3

6 5

5 4 3

5 6 8 9

Figure 2 - Least-cost triangular route

From this point on, we'll refer to the numbers in the triangle as costs, and the sum of
numbers found along a route as the cost of the route. The route with the smallest cost is
the minimum-cost or least-cost route. Finally, besides using arrows, we can identify a
triangle route by the sequence of directions (“L” and “R”, for left or right, respectively)
followed in the steps of the route; since the apex is always the start of the route, we can
leave it out. Using this terminology and notation, the least-cost route shown in Figure 2
is RLL, with a cost of 18.

Too many routes?

As we saw above, the number of possible routes in the triangle route problem doubles
with each row added to the triangle. This type of growth (multiplication by a constant
term at each step) is called exponential growth, and it doesn't bode well for a solution
approach that uses an exhaustive search.

2 Note that the problem which served as inspiration for this lesson has the opposite objective [1]: in that
problem, the goal is to find the largest sum, rather than the smallest. In fact, the concepts explored
here apply equally to both objectives.

2 Algorithms in Java and Python: The Triangle Route Problem

How bad is the combinatorial explosion3 for the triangle route problem? Let's look at an
example: if our triangle has 100 rows, then the number of steps is 99, and the number of
possible routes is 299 , or approximately 6.34×1029 . If we had a computer that could
evaluate one trillion possible routes every second, it would still need about 20 billion
years to evaluate them all.

Let's try to come up with an algorithm (a step-by-step procedure for solving a problem,
or completing a specific task) that we can use with pencil and paper, for the case of a
triangle with 8 or so rows. If we're successful, maybe that algorithm can also be used by
a computer for a triangle with 100 rows – or more!

Discussion: Approaches for solving larger cases

By now, it should be clear that searching through all possible triangle routes isn't a very
good way to find the best route, especially if the triangle is large. Read and discuss the
following questions, and see if you can come up with an alternative approach (i.e. one
that doesn't use an exhaustive search) for solving the triangle route problem.

• What algorithms (or less formal methods) did you use for task 1?

• Can you describe your reasoning in detail?

• How could your methods be applied to a larger triangle?

• If we reverse the direction of travel, by starting the routes at the base of the
triangle and traveling to the apex, would that change the costs of the routes?
Could it result in a different route being the least-cost route?

• Do you think that knowing the least-cost route through a section of the triangle
would help us find the least-cost route through the whole triangle?

3 In combinatorial optimization, when the size of the solution space (the set of possible solutions) grows
much faster than the number of decision values, we say the solution space has a combinatorial explosion.

Consider the problem of assigning 4 teachers to 4 different classes. The number of possible
combinations is 4!= 4×3×2×1= 24 . We could easily evaluate all 24 alternatives to find the best one.
But what about 40 classes and 40 teachers? In that case, the number of possible combinations can be as
high as 40! , or about 8.16×1047 . Of course, many combinations would be excluded from the solution
space as invalid (e.g. we might not want to allow combinations where English teachers are assigned to
teach math classes). Nonetheless, it's not hard to formulate an assignment problem that's too large for
even the fastest computer to evaluate all of the allowed solutions in a reasonable amount of time.

Algorithms in Java and Python: The Triangle Route Problem 3

This page intentionally left blank.

4 Algorithms in Java and Python: The Triangle Route Problem

2. A More Efficient Method

Solving from the bottom up

11

6 5

8 17 13

3 7 8 7

15 11 5 13 14

19 6 17 18 5 10

Figure 3 - Example triangle with six rows

The triangle in Figure 3 has 6 rows; therefore, all its triangle routes are 5 steps long, and
there are 25 = 32 possible triangle routes. However, inside the triangle are many
smaller triangles – some of which have their bases along the bottom row of the larger
triangle. We can take advantage of this by building our triangle routes from bottom to
top, working from smaller to larger triangles.

Let's start with the second-to-last row – the one with the cost values 15, 11, 5, 13, and 14.
Each of these numbers is located at the apex of a triangle of 3 numbers – the apex itself,
and the 2 values directly below. For example, 15 is at the apex of a triangle with 19 and
6 on its base; to find the least-cost route for just that triangle, we only need to step from
15 to the smaller of the two values below it (i.e. 6) and we have a route with a cost of 21.
We can mark that step with an arrow from 15 to 6; we'll also replace the number 15 by
the number 21, to show that the minimum cost from here to the base, once a route
arrives to this point, is 21. If we work across that row, finding the minimum-cost routes
for each of the small triangles, we get the result in Figure 4.

11

6 5

8 17 13

3 7 8 7

15 21 11 17 5 22 13 18 14 19

19 6 17 18 5 10

Figure 4 - Finding least-cost routes from second-to-bottom row to base

Algorithms in Java and Python: The Triangle Route Problem 5

Now let's move up one row, to the cost values 3, 7, 2, and 7. Each of these numbers is
the apex of a triangle of 3 numbers, and we've already identified the least-cost routes
from the 2 numbers below the apex. For example, 3 has the values 21 and 17 below it;
these are the costs of the best routes that start at those locations; obviously, the least-cost
route starting with the 3 must step to the 17, with a total cost of 173 = 20 . We
complete the rest of the row in the same fashion (see Figure 5).

11

6 5

8 17 13

3 20 7 24 8 26 7 25

15 21 11 17 5 22 13 18 14 19

19 6 17 18 5 10

Figure 5 - Backtracking to find least-cost routes from next higher row

We can continue building the least-cost route in this backtracking fashion, moving up
row by row, until we reach the apex of the largest triangle. At this point, the least-cost
route for the entire triangle can be found by reversing direction and following the
arrows from the apex to the base; there will be only one such route. (If desired, and if
we've been drawing the arrows in pencil, we can erase those that aren't on the least-cost
route.)

11 45

6 34 12 50

8 28 17 41 13 38

3 20 7 24 8 26 7 25

15 21 11 17 5 22 13 18 14 19

19 6 17 18 5 10

Figure 6 - Least-cost route from apex to base

The least-cost triangle route for the triangle in Figure 3 is thus LLRL, with a cost of 45
(see Figure 6).

To apply this approach to other triangle route problems, it would be useful to have a
more formal, written description of the algorithm that we're following. In the
description that follows, please note the use of indentation and order to indicate the
structure and flow of the algorithm.

6 Algorithms in Java and Python: The Triangle Route Problem

Bottom-up algorithm for finding the least-cost triangle route

• Starting with the second-to-bottom row, and moving up row by row to the apex:

◦ Starting with the left-most item in the current row, and moving one by one
across to the right-most item:

▪ cC = the current item.

▪ c L= the item below and to the left of the current item.

▪ c R= the item below and to the right of the item.

▪ If c L≤ cR :

• Draw an arrow from cC to c L .

• Replace cC with cCcL .

Otherwise:

• Draw an arrow from cC to c R .

• Replace cC with cCcR .

• The least-route is found by following the arrows from the apex to the base.

• The value now at the apex of the triangle is the minimum triangle route cost.4

4 Of course, this isn't the only way to express the algorithm. For instance, we could use pseudocode (see
Appendix B).

Algorithms in Java and Python: The Triangle Route Problem 7

Pencil-and-paper task 2: Using the bottom-up algorithm

Using the bottom-up algorithm (above), solve this triangle route problem.

4

9 8

8 13 13

5 8 12 5

19 10 15 8 11

7 13 12 10 15 7

14 13 6 10 12 13 9

9 7 15 4 2 5 7 12

Figure 7

8 Algorithms in Java and Python: The Triangle Route Problem

Dynamic programming

We can prove that our algorithm works (i.e. it finds the least-cost route) quite simply:
Using the definition of a triangle route with the triangle in Figure 8, we know that any
route from A to the base must pass through B or C; thus, we know that the least-cost
route from A to the base must include either the least-cost route from B to the base, or
the least-cost route from C to the base, based on which one has the smaller cost.
Similarly, the least-cost route from B to the base must include one of the least-cost
routes from either D or E to the base – and so on, all the way down.

A

B C

D E F

… … … …

Figure 8 - Illustration of optimal substructure

Working from the bottom up, finding the least-cost route for each sub-problem, and
computing its cost, involves comparing 2 numbers and adding 2 numbers. In a triangle
with n rows, we do this n n−1/ 2 times, vs. the 2n−1 route evaluations and
comparisons required by an exhaustive search. Clearly, our current algorithm is much
more efficient than an exhaustive search [2].

When the solution to a problem can be constructed efficiently from the solutions of its
sub-problems, we say that the problem has optimal substructure. This is one of the
conditions for using dynamic programming – a set of problem-solving techniques in
mathematics and computer science, where a problem is defined (and solved) in terms of
its sub-problems [3]. (When the sub-problems don't overlap, the techniques are usually
referred to as divide and conquer, rather than dynamic programming [4].)

Notwithstanding the name, dynamic programming isn't necessarily dynamic, and it
doesn't necessarily involve computer programming. “Dynamic” was originally used
because it sounded impressive, and “programming” refers to the optimization of plans
of action – i.e. programs. In any event, as the term is currently used, it applies to our
algorithm.

The dynamic programming approach we've been using is called a bottom-up method – not
because the algorithm starts close to the base of the triangle, but because it starts with
the smallest sub-problems, and systematically builds solutions to larger and larger sub-
problems. There are also dynamic programming approaches that start with the original

Algorithms in Java and Python: The Triangle Route Problem 9

problem and move to smaller sub-problems; these are called top-down methods [3]. A
top-down approach often follows directly from the definition of a problem in terms of
its sub-problems (for example, the logic used in the proof above follows a top-down
approach). On the other hand, a bottom-up algorithm is often a more straightforward
way to arrive at a solution.

What's it good for?

So our algorithm is efficient – but what good is it, really? After all, finding a route with
the lowest sum through a triangle of numbers doesn't seem like the most practical
problem.

In fact, the triangle route problem can be seen as a network routing problem – albeit one
with a rather unusually shaped network. If we rotate Figure 1 by 90 degrees
counterclockwise, and treat each number's logical position as a node on a network, and
the number itself as the weight (a general term from network theory, used to represent
cost, distance, time, etc.) of the edges leading into that node, the network routing
problem is clear: find the minimum-weight route from Start to Finish (see Figure 9).

With some adjustments, the algorithm we're using for finding the least-cost triangle
route could also be used to find the minimum-weight route over a much more general
network. However, we'll stick to triangle routes for this lesson.

10 Algorithms in Java and Python: The Triangle Route Problem

Figure 9

Start Finish3
5

6

3

9

8

4

4

5
5

6

6

8
0

0

0
0

3. General Implementation Features

Introduction

As noted earlier, an exhaustive search for the least-cost route through a triangle with
100 rows is practically impossible. However, because our new algorithm is much more
efficient, we'll try something ambitious: after implementing the algorithm in Java and
Python, we'll use it to find the least-cost route for a triangle with 500 rows!

For this lesson, we won't be writing our programs from scratch: the code for reading the
triangular arrangement of costs from a data file, and for keeping track of the cost and
steps in a route has already been written for us. In fact, even the code for the algorithm
is included here, but we'll be transcribing it from this document into our programs; by
doing so, and reviewing what we've written, we'll start to see how key concepts are
expressed in these two programming languages, and we'll get a taste of the details we
need to pay attention to when programming – and the problems that can happen when
we don't.

Data layout

The data file and in-memory data structures our program use don't look exactly like the
triangles we've seen so far – but they're not all that different. If we shift our triangles to
the left, the triangle in Figure 8 becomes the triangle in Figure 10; the latter's a more
accurate picture for how the data will be stored and managed. So a step down and to
the left needs to be handled in our code as a step straight down.

A

B C

D E F

… … … …

Figure 10 - In-memory arrangement of triangle costs

Development Environment

The remainder of the lesson assumes we're writing our code with the NetBeans
integrated development environment (IDE – a program for editing, running, and debugging
code) [5]. NetBeans is used primarily for Java development, but it can also be used with
Python and other languages. With minor adjustments, these materials can be used with
almost any Java 1.5/5.0+ or Python 2.5.x-2.7.x (but not Python v3.x) tool set.

Algorithms in Java and Python: The Triangle Route Problem 11

This page intentionally left blank.

12 Algorithms in Java and Python: The Triangle Route Problem

4. Java Implementation

Open the Java project

Launch the NetBeans application. Depending on how it's being run (e.g. from a flash
drive vs. a hard drive), and the configuration of your computer, it can take a while to
start up, so be patient.

Once in NetBeans, if you haven't previously opened the TriangleRouteJava project,
you'll need to do so now. To open a project, select the File/Open Project… menu
command. In the Open Project window (see Figure 11), navigate to the directory
containing the materials for this lesson, select TriangleRouteJava (it may have a coffee
cup icon next to it), check the Open as Main Project checkbox, and click the Open
Project button.

After the project opens, you should see TriangleRouteJava listed in the NetBeans
Projects view (Figure 12), with a number of folders below it.

Algorithms in Java and Python: The Triangle Route Problem 13

Figure 11 - Opening TriangleRouteJava project

All of the Java code we'll write will be in one file – one that already exists in the project
– so let's open that file now as well.

In the Projects view of NetBeans, expand the folder of the TriangleRouteJava project,
then the org.nm.challenge.kickoff.triangleroute package, and locate the file
Optimizer.java (Figure 13).

Double-click Optimizer.java to open that file in the editor. Depending on your
NetBeans configuration, you should see line numbers along the left side of the editing
window. You might also see that some numbers seem to be skipped; when you notice

14 Algorithms in Java and Python: The Triangle Route Problem

Figure 12 - Structure of project contents

Figure 13 - Locating Optimizer.java file

that, also note that there's a an expandable control (a plus sign) to the right of the line
number just before the skipped lines. (If no lines are skipped, don't worry about it.)

Like many programming editors, NetBeans can be configured to perform code folding –
i.e. temporarily collapse some portions of the source code to make it easier for the
programmer to navigate through a file. In this example, NetBeans is folding certain
kinds of comments (non-executable code) by default. In any event, we probably won't
need to worry about code folding for now.

The file we've opened, Optimizer.java, contains the definition of the Optimizer class.
In Java – as in many other program languages – a class is a construct for packaging
together data and methods (functionality) common to all objects of that type. In this case,
objects of the Optimizer type will hold the cost values for a triangle that are read from a
file, and they'll have methods that use an implementation of the bottom-up algorithm to
find the least-cost route for that triangle.

Some Java classes also have a special method (main) that acts as a starting point for
running a Java application (program). An application might use dozens of classes, but
there has to be at least one class with a main method, so that the Java runtime
environment (JRE) knows which code should be started when the application runs.
Fortunately, Optimizer has a main method already written for us.

Algorithms in Java and Python: The Triangle Route Problem 15

Figure 14 - Code folding of initial comment and documentation comments

Java task 1: setupRoutes

Around line 99, you'll see a comment marking the location of the first code we'll write:

As seen in Figure 15, you might see a small blue marker instead of a line number. This
is a bookmark; NetBeans lets us use bookmarks to set navigation points in a file.

Our first task, as the comments indicate, is to write a setupRoutes method that will
build the first set of routes from the bottom row of the triangle. In the code provided to
us, the costs in the triangle are stored in an array called costs – actually, costs is an
array of arrays: each element in costs corresponds to a row of the triangle, and is itself
an array of numbers, containing the cost values for a single row. costs is defined as an
instance variable of the Optimizer class – i.e. all Optimizer objects (instances) have their
own costs array.

Instead of modifying the values in the triangle, as we did on paper, we'll use a different
kind of object, a Route (which has been provided for us), to keep track of the least-cost
route from the current point in the triangle to the base. A Route instance can be created
with just a starting cost, or based on another Route instance. In setupRoutes, we'll
create initial routes that have no steps, with costs equal to the values in the bottom row.

Create the setupRoutes method by typing (below the placeholder comment) the code
seen in Listing 1. Note that you don't need to re-write the comment; it's shown here to
help you see where to add the new code.

As you type the code, please note the following:

• Parentheses, square brackets, and curly braces have different meanings in Java,
and are not interchangeable.

16 Algorithms in Java and Python: The Triangle Route Problem

Figure 15 - Placeholder comment for Java task 1

• Java is case-sensitive: capitalization (or lack of same) matters; in particular, all Java
keywords are lower-case.

• All simple statements (but not all lines) in Java must end with a semicolon; all
that appear in this code are required.

• Like many other programming editors, NetBeans has certain code completion
features that are enabled by default. For example, when you type a left curly
brace and press the Enter key, NetBeans creates a blank line, and follows that
with another line containing an automatically generated matching right curly
brace. If you then type another right curly brace, you'll have mismatched braces,
which will cause a syntax error. NetBeans handles parentheses, square brackets,
and single and double quotes in a similar way, but you generally don't even need
to press the Enter key for NetBeans to generate the matching character in those
cases.

 /*
 * JAVA TASK 1
 * TODO: Create setupRoutes method. This method must fill the routes array,
 * based on the last element in the costs array (i.e. the base of the
 * triangle.
 */
 private void setupRoutes() {
 int[] finalStepCosts = costs[costs.length - 1];
 routes = new Route[finalStepCosts.length];
 for (int i = 0; i < finalStepCosts.length; i++) {
 routes[i] = new Route(finalStepCosts[i]);
 }
 }

Listing 1 - setupRoutes method

What does the setupRoutes method do? Let's look at the key elements briefly:

• The private access modifier keyword makes this method invisible to code
outside Optimizer.

• All Java method declarations must state the type of data that the method will
return to the caller (the code calling the method). The return type used here, void,
indicates that no data is returned by this method.

• The name of the method is setupRoutes, and the empty parentheses that follow
the method name declare that this method takes no parameters (additional data
passed to a method when it's invoked). The name and parameter list, along with
the access modifier and return type, make up the signature of a method.

Algorithms in Java and Python: The Triangle Route Problem 17

• The left curly brace following the method signature starts the block statement (a
groups of statements within curly braces; a method's block statement is also
called the method body) that implements the method's logic; the right curly brace
six lines below that ends the block statement.

• Methods and other block statements can include local variables – variables used
only within the enclosing curly braces. We've declared the local variable
finalStepCosts as a reference to an int[] (array of integers), and set it to refer
to the array that holds the values from the last row of the triangle.

• The Optimizer class has a variable called routes, which is a reference to an array
of Route objects; however, it doesn't refer to an actual array initially. In
setupRoutes, we're making it refer to a new array of Route objects, which has as
many elements as the number of elements in finalStepCosts.

• The for iteration statement is a workhorse of many programming languages.
Among other things, it's used to perform some operation for each element of an
array. Here, we iterate over the finalStepCosts array, creating a new Route
object for each element and storing that object in the routes array.

Our code still isn't doing much, but we should make sure that it doesn't have any
syntax errors. (We won't be able to check for logical errors until we write the code that
invokes the setupRoutes method.) By default, NetBeans checks our code as we write,
and it compiles the code as soon as we save it, so go ahead and save the file (the
File/Save menu option, or the Ctrl-S key combination). Look for any red underlines
under the code you've written, or red markers in the left margin; if you hold your
mouse over a red line or marker, a pop-up will give you information about the error
found. (At this point, any errors you'll see will most likely be caused by spelling or
punctuation mistakes.) Starting with the error closest to the top of the file and working
down, try to use the error messages to figure out and correct the problem. When all
reported errors have been corrected, save the file again.

Besides compiling, we can actually run our program. Since the class we're working on
(Optimizer) has a main method, we can run it as a Java application with the Run/Run
File menu command. Alternatively, since we set the TriangleRouteJava project to be
the main project when we opened it, and since Optimizer was already configured as
the main class in the project, we can click on the green triangular button in the toolbar
near the top of the NetBeans window (see Figure 16); that button runs the main method
of the main class in the main project.

18 Algorithms in Java and Python: The Triangle Route Problem

When the program runs, the results are displayed in the Output panel, usually located
at the bottom of the screen. The Optimizer.main method (i.e. the main method of the
Optimizer class) is programmed to load the triangle data from a file, solve for the least-
cost route, and print out the results. But because we haven't finished writing the code to
find the least-cost route, we don't have any meaningful results yet. Instead, what
Optimizer.main prints out as the Route object for the least-cost route is null – a Java
keyword used to indicate a reference to nothing (see Figure 17).

Many programmers make the mistake of writing code in an all-or-nothing fashion. They
write a lot of code, without organizing it so it can be tested along the way; when they
finally do test, the errors are many and entangled, making it more difficult to correct
them than it should be. We'll try to avoid that mistake, by writing small pieces of code,
then compiling and testing after each addition, even if the new code doesn't do much.

Now that you've completed the setupRoutes method, you can delete the placeholder
comments for task 1 if you want. If you do, make sure to delete the block comment start
(“/*”) on line 99, the block comment end (“*/”) on line 104, and everything in between.
(Feel free to do this after each task.)

Algorithms in Java and Python: The Triangle Route Problem 19

Figure 16 - The “Run main project” button

Figure 17 - Initial Java execution output

Java task 2: backtrackRoutes

Move down a few lines to the next block comment, and you'll see the placeholder for
the next task: writing the backtrackRoutes method. (Don't worry if your line numbers
don't match what you see in Figure 18; they may or may not match, depending on
deletion of placeholder comments, line breaks in the code, etc.)

In the backtrackRoutes method, we need to examine the contents of the routes array,
to see which of each pair of adjacent routes is less costly. This will tell us which
direction we should step, from the item located above that pair in the triangle. Then
we'll create a new Route object based on the less costly route, insert the item above into
the route, and add its cost (from the costs array) to the cost of the route. As we do this
for each pair, we'll place the new Route object into a new array of routes; when we're
done with the row, we'll assign the routes variable to refer to this new array. At the
completion of one invocation of the backtrackRoutes method, there'll be one fewer
item in the routes array than there were before, since we'll have moved up one row in
the triangle.

Add the code from Listing 2 to the Optimizer class, to create the backtrackRoutes
method. This one is longer than setupRoutes (actually, this is the largest single piece of
code we'll write in either implementation), so pay close attention to the new code
(remember, don't re-write the comment lines), including spelling, case, punctuation,
parentheses, brackets, and braces. (One thing you don't have to worry about is
indentation: the automatic indenting done by NetBeans is fine for our purposes.)

20 Algorithms in Java and Python: The Triangle Route Problem

Figure 18 - Placeholder comment for Java task 2

 /*
 * JAVA TASK 2
 * TODO: Create backtrackRoutes method. This method must update the routes
 * array by comparing adjacent route costs, creating new Route
 * objects (based on the lower-cost alternative), and updating the new
 * routes with the values from the previous element of the costs array
 * (i.e. the next-higher row in the triangle).
 */
 private void backtrackRoutes() {
 Route[] result = new Route[routes.length - 1];
 int[] prependedCosts = costs[routes.length - 2];
 for (int i = 0; i < prependedCosts.length; i++) {
 Route leftRoute = routes[i];
 Route rightRoute = routes[i + 1];
 if (leftRoute.getCost() <= rightRoute.getCost()) {
 result[i] = new Route(leftRoute)
 .prepend(Step.LEFT, prependedCosts[i]);
 }
 else {
 result[i] = new Route(rightRoute)
 .prepend(Step.RIGHT, prependedCosts[i]);
 }
 }
 routes = result;
 }

Listing 2 - backtrackRoutes method

Some of the code we wrote here should be familiar from the previous method. Once
again, we have private access, a void return type, and an empty parameter list. Of
course, the block statement making up the backtrackRoutes method implementation is
very different from that of setupRoutes, since the task being performed is different.

• We declare an array of Route objects, referred to as result, as a local variable.

• We declare another local variable, prependedCosts, and assign to it the element
of the costs array for the next higher row of the triangle. (Note that we use the
current length of routes to determine the correct index into the costs array.)

• Next, we iterate over the prependedCosts array. For each item, we do the
following:

◦ Declare leftRoute and rightRoute as local variables, referring (respectively)
to the Route starting below and to the left, and below and to the right, of the
current cost item.

◦ If the cost of leftRoute is less than or equal to the cost of rightRoute, we
construct a new Route object based on leftRoute, and then prepend (insert at
the start) a step in the left direction, and the current item's cost, to that route.

Algorithms in Java and Python: The Triangle Route Problem 21

Otherwise, the new Route object is based on rightRoute, and the prepended
step is in the right direction. In either case, the new Route object is placed in
the result array.

In prepending a step to the route, we're using a finite set of constant values to
represent the step directions. In this case, an enum (a special kind of class)
named Step has been provided, with two possible values: LEFT and RIGHT.

(Note that we've broken some of the expressions into two lines. In general,
Java doesn't care about line breaks, as long as we break between tokens, and
not in the middle of an identifier or literal value.)

• After iteration is complete, and the result array is fully populated with new
Route objects, the route variable is made to refer to the result array.

Once again, we need to correct any errors that NetBeans has flagged in our code, and
save our changes.

Java task 3: solve

Though we've written most of the new code we'll need, neither of the two new methods
is being invoked yet.

In the code provided to us, the main method creates a new Optimizer object, and the
constructor (a block statement similar to a method, but used for the specific purpose of
initializing a new object from a given class type) for the Optimizer class reads the cost
data from a file. Then, the Optimizer.solve method is called, to find the least-cost
route for the triangle. However, the solve method isn't calling the new setupRoutes
and backtrackRoutes methods yet – actually, it's not really doing anything yet – so our
final Java programming task is to add those invocations to the solve method.

Start by scrolling down to the placeholder comment for task 3 (see Figure 19). This time,
you'll notice that there's already a solve method – in fact, if there weren't, NetBeans
would be unable to compile or run the program, since the main method calls it. But the
solve method is empty: there's no code between the curly braces that enclose the
method's implementation. For the final additions to the Optimizer class, we need to be
very careful to write the new code as part of the solve method's block statement – i.e.
between the curly braces.

22 Algorithms in Java and Python: The Triangle Route Problem

This time, the code we need to write is fairly simple: setupRoutes must be invoked
(called), and then backtrackRoutes must be invoked repeatedly, until the routes
variable has only a single element – namely, the Route object containing the least-cost
route that starts at the apex of the triangle. (Remember: each invocation of
backtrackRoutes moves one row up in the triangle.)

Add the code from Listing 3 to the Optimizer class. As before, you don't need to re-
write the comments; much more important, you must not re-write the method
signature, or the curly braces that enclose the method body: you should only add the
four lines of code between the curly braces that enclose the method body.

 /*
 * JAVA TASK 3
 * TODO: Complete the solve method by adding code to call setupRoutes and
 * to call backtrackRoutes repeatedly, until the routes array has only
 * one item.
 */
 public void solve() {
 setupRoutes();
 while (routes.length > 1) {
 backtrackRoutes();
 }
 }

Listing 3 - solve method

The changes we made this time were quite simple:

• The setupRoutes method is called. As you may remember, that method
populates the routes array with trivial routes that only include the bottom row
of the triangle.

Algorithms in Java and Python: The Triangle Route Problem 23

Figure 19 - Placeholder comment for Java task 3

• The backtrackRoutes method is called repeatedly, in a while loop. A while loop
repeats as long as a given condition is true – in this case, as long as the length of
the routes array (i.e. the number of Route objects in the array) is greater than 1.

• Remember that right after calling setupRoutes, the number of elements in
routes is equal to the number of items along the bottom of the triangle; every
time backtrackRoutes is called, the number of routes decreases by one, since the
new routes start one row higher up in the triangle. Obviously, when the number
of elements in routes is equal to 1, we've reached the apex of the triangle, and
the single Route object in the route array represents the least-cost route from the
apex of the triangle to its base. At that point, the while condition prevents any
further iteration, and the solve method is done.

Check, fix, and save your changes.

Java task 4: Test the program

Since the main method is already calling the solve method, and the solve method now
invokes the setupRoutes and backtrackRoutes methods, our program should be ready
to run. Of course, it's possible that we accidentally mistyped some of the code, and
though it's syntactically correct, there are logical errors. But let's not get ahead of
ourselves.

Run your program as described at the end of Java task 1 (p. 13). If all of your code has
been written correctly, the Output panel will look something like Figure 20.

From this output, we see that the least-cost route for our 500-row triangle starts by
stepping left 4 times (the start of the route is displayed as an asterisk), right 1 time, left 3
times, and so on (of course, every step also moves down 1 row). Just before it reaches
the base, it steps right 1 time, then left 5 times. The total cost for this route is 12,883.

For comparison, the values in the triangle are random integers, ranging from 1 to 99,
with an average of about 50. If we start at the apex and flip a coin 499 times, stepping

24 Algorithms in Java and Python: The Triangle Route Problem

Figure 20 - Output produced by successful execution of correct code

down and to the left on heads, and down and to the right on tails, we'll end up at the
base, with an expected route cost of about 500×50 , or 25,000 . Even if we didn't
already know that our algorithm is guaranteed to find the least-cost route, we have
initial evidence that it does a good job of finding a much better-than-average route.

What if your program fails with an error message, or doesn't get the same answer? The
different kinds of logical errors that can creep into code are too numerous to list, but
here are a few that might show up in our program:

• Null pointer errors

The code tries to perform an operation on an array or object, but the variable that
is supposed to refer to that array or object actually refers to nothing (null). This
is usually caused by accidental omission of a statement that assigns a non-null
value to an array or object reference variable.

When this error happens, an exception (an error condition detected by the JRE)
occurs, and a message to that effect is usually printed or written to an error log.
In NetBeans, these error messages are displayed in the Output panel. If this
happens, we can use the line number indicated by the error message, and check
for a missing assignment statement somewhere above that line in the code.

• Array index out of bounds

When we read or write to an array, Java checks to make sure that we're not
accessing an element at a position outside the limits of the array. If we are, an
exception occurs.

The culprit could be the statement we're using to create the array; we might be
specifying an incorrect size. Or, it could be that we're iterating over the elements
of an array in a for loop, but we're incorrectly accessing a different array – with a
different size – in the loop. Or we could be using the wrong index variable to
access the desired array. In any event, as before, we can use the line number
indicated in the error message to help track down the problem.

• Bad stopping condition or bad update logic in a while or for loop

This is often as simple as testing for the opposite inequality to what is intended.
For example, we might intend for a while loop to continue iterating as long as x
is greater than or equal to 1 – but we accidentally write it as “while (x <= 1)
{…}”. Or, we might not be updating x correctly in the loop. Neither problem
seems serious, but depending on the specific error, and the initial value of x, this
mistake could end up causing our loop never to iterate, to iterate fewer or more

Algorithms in Java and Python: The Triangle Route Problem 25

times than expected – or even to iterate forever (an infinite loop). In either case,
the JRE generally can't detect this problem for us, because it can't read our minds
and figure out that what we wrote wasn't what we meant.

Quite often, we don't suspect an infinite loop until we realize that our program
seems to get stuck on some operation, and never completes it. If this seems to be
the case, we can use the NetBeans debugger to help find the error; but before
doing that, we should review our for and while loops, to make sure that they're
written correctly.

• Valid-but-unintended syntax

This is a broad category, but one of the most common sources of this kind of
problem is leaving out curly braces for what is intended to be a block statement
in a for or while loop. The usual result is that instead of repeating a whole block
of statements multiple times, only the first of those statements is repeated.

This could show up as the program displaying an incorrect answer, or an
exception causing the program to halt; like some other error conditions, it could
even ripple through the program, showing up as a different kind of error at
another location in the code. This type of error can be one of the more difficult to
track down, unfortunately – which is one of the reasons that many programmers
get into the habit of using block statements even when they aren't strictly
needed; for them, typing the start and end curly braces because almost a reflex
action, triggered whenever they write for and while loops, if statements, etc.
(This is also one of the main reasons for the automatic curly brace generation
feature in NetBeans and other programming editors.)

If you do get different results than those in Figure 20, or if your program halts without
completing its calculations, use the supplied code listings, the information above, and
any error messages to try and resolve the problems.

Once you have your program running correctly, close the TriangleRouteJava project by
right-clicking on the project name in the Projects view, and selecting Close from the
context menu. (This step isn't required, but it will help avoid confusion as you begin
working on the Python implementation.)

26 Algorithms in Java and Python: The Triangle Route Problem

5. Python Implementation

Open the Python project

To open the Python language version of the project, follow the instructions given in
“Open the Java project” (see page 13) for the Java implementation; however, rather than
opening TriangleRouteJava, select and open TriangleRoutePython instead.

Once again, all of our new code will be written in a single file that's already in the
project. The file is optimizer.py, and it's located in the Sources folder of the
TriangleRoutePython project (see Figure 22). Double-click on optimizer.py to open it
in the editor (see Figure 23). Again, you may notice that some code folding has been
done; as before, this can be ignored.

Like the Optimizer.java file, the optimizer.py file defines a class called Optimizer
(see Figure 24); the parallel naming between the two versions was deliberate for this
lesson. However, while a one-to-one correspondence between file names and class
names is a strict rule in Java, Python has no such requirement, and it's quite common to
find Python modules (files) that contain multiple classes, none of them with the same
name as the module. (Java files can contain multiple classes, but only one non-nested
class in a file may be declared public, and it must have the same name as the file.)

Algorithms in Java and Python: The Triangle Route Problem 27

Figure 21 - Opening TriangleRoutePython project

28 Algorithms in Java and Python: The Triangle Route Problem

Figure 22 - Locating optimizer.py file

Figure 23 - Code folding of initial comment

Figure 24 - Optimizer class declaration

Python task 1: setup_routes

At line 50 or so, you'll find the placeholder comment for the first method we'll be
adding to the Python Optimizer class.

Functionally, Python task 1 is the same as the Java task 1. However, some of the surface
details are different (and as we'll see, the implementation code is quite different). For
one thing, we'll follow the convention used by many Python programmers, and use
underscores in multi-word identifiers. Also, the structures holding the costs and routes
for the triangle are called _costs and _routes, with initial underscores; Python doesn't
support access modifiers (e.g. private), so the initial underscore is often used as a hint
that the variable should be treated as if it were private.

Another important detail about both of these variables is that they're lists, rather than
arrays. (_costs is actually a list of lists, just as the Java variable costs was an array of
arrays.) Lists are a native data structure in Python (arrays are not), that can hold any
kind of data (a single list can even hold multiple kinds of data at once), and can grow or
shrink as needed. Further, many of the operations that require iteration over an array in
Java (and many other languages) can be expressed very compactly in Python, without
explicit iteration statements. For the setup_routes method, we'll use one of these list
processing techniques, called list comprehension.

Make your first addition to optimizer.py by writing the code shown in Listing 4 below
the placeholder comment. Please note that Python, like Java, is case-sensitive. Also,
unlike Java, indentation is important in Python (more on that below).

Algorithms in Java and Python: The Triangle Route Problem 29

Figure 25 - Placehold comment for Python task 1

 # PYTHON TASK 1
 # TODO: Create setup_routes method. This method must fill the self._routes
 # list, based on the last item in the self._costs list (i.e. the base
 # of the triangle).
 def setup_routes(self):
 self._routes = []
 final_step_costs = self._costs[-1]
 self._routes = [Route(cost) for cost in final_step_costs]

Listing 4 - setupRoutes method

Let's review the new code:

• The def keyword is used to define a new method or function. Notice that in
Python, we don't declare the type of data the method returns – or indeed, if it
returns anything or not.

• The setup_routes method has a parameter list containing a single item, self.
Within the body of a method, self refers to the current instance of the class (in
this case, Optimizer), and this parameter is required when defining a method
that will be invoked on objects of a class, However, we can also define functions
that aren't associated with a class, and these don't have self as a parameter.

• Python doesn't use curly braces to enclose block statements (called suites in
Python); instead, indentation is used for this purpose. This means that careful
attention to consistent indentation is a must, when programming in Python.

• In Python, when accessing instance variables, we must refer to them using an
instance identifier. Inside a method definition, self refers to the current instance,
so we use self._costs to access _costs, and self._routes to access _routes.

• Just as we don't declare return types for Python methods, we don't declare types
for variables; the type of a variable is inferred from the type of data assigned to
it. Here, we declare the local variable final_step_costs, and assign to it the last
item in the _costs list. Since _costs is a list of lists, each of its items is itself a list,
and final_step_costs is a list. (As with array indices in Java, we use square
brackets in Python to access items in a list. However, this operation is more
flexible in Python; in this case, we use an index value of -1 to get the last item in
the list. We'll see more ways to refer to list items in the next task.)

• Like Java, Python uses a for statement for iteration. It can be used very much
like the Java for; in this case, however, it's being used in list comprehension. In list
comprehension, a list is constructed by evaluating a given expression for every
item in a list (we can optionally filter the source list items, but we're not doing
that here). So rather than saying “for every item in a list, do the following suite of

30 Algorithms in Java and Python: The Triangle Route Problem

operations,” we're saying “construct a new list by evaluating this expression for
every item in an existing list.” This might seem like a trivial distinction, but it's
the key to some of Python's elegance of expression.

We're constructing a new Route object for each item in the final_step_costs
list; using list comprehension, these Route objects are themselves being gathered
into a list. Finally, we assign that resulting list to _routes.

Once again, save your changes. Because of the nature of Python, some errors caught
when writing Java code aren't detected until runtime with Python. However, NetBeans
will do its best to find structural errors, and flag them with the usual red marks.

When all flagged errors are corrected, run the program, as described at the end of Java
task 1 in the Java Implementation section (p. 13). This time, instead of the result null,
you'll get its Python equivalent, None (see Figure 26).

(If you want to delete the placeholder comments, note that Python doesn't have block
comments; instead, the # character is used to start a comment that continues only until
the end of that line. On the plus side, that means we don't have to be quite as careful
when deleting Python comments as we do when deleting block comments in Java.)

Python task 2: backtrack_routes

Scroll down a bit in the optimizer.py file, and locate the placeholder comment for task
2 (see Figure 27).

Algorithms in Java and Python: The Triangle Route Problem 31

Figure 26 - Initial Python execution output

Figure 27 - Placeholder comment for Python task 2

In the backtrack_routes method, we'll use another one of the powerful list processing
tools offered by Python, the map function. This function lets us transform (i.e. map) one
list to another, by specifying a function that should be applied to each item in the first
list; the results of applying that function are gathered into the resulting list. (If this
sounds similar to list comprehension, it is: there's a lot of overlap between these two
techniques, but each also has unique capabilities.)

In fact, the map function can use more than one list at a time as an input value. We can
process multiple lists at once, taking corresponding values from all of them to produce
the resulting list items. That's what we'll do in backtrack_routes.

In our algorithm, we create a new set of least-cost routes for each row by looking at the
pairs of least-cost routes that start in the row below, and comparing their costs to find
the step directions for the routes starting in the current row. Then, those step directions
are inserted into the selected routes, and the cost values in the current row are added to
the route costs. We can show part of this with Figure 28, where c0, c1, c2, etc. are the costs
in the current row, and r0, r1, r2, etc. are the previously computed least-cost routes that
start in the next row down.

c0 c1 c2 c3 c4 … cn-1

r0 r1 r2 r3 r4 r5 … rn

Figure 28 - Row of costs with row of least-cost routes below

Note that the row of costs has n items, and the row of routes has n1 items. After
processing these rows, we'll have a row of n routes.

We can rearrange the contents of these two rows into three lists.5 Note that all of the r
values, apart from r0 and rn, appear in both of the route lists. This makes sense, since
they're used as the left alternative for one c value, and the right alternative for another.

costs = [c0, c1, c2,  , cn−1]
left routes = [r 0, r 1, r2,  , r n−1]

right routes = [r 1, r 2, r3,  , r n]

Each of these lists contains n items. Given any triplet c , r , r '  of corresponding items
taken from the three lists, we can completely determine the direction of the step to take

5 If we were using a language like MATLAB, we might instead rearrange the values into a 3×n
matrix. For every programming language, there's a

32 Algorithms in Java and Python: The Triangle Route Problem

from c for a least-cost route. The map function lets us express this in a very compact
fashion.

Add the backtrack_routes method to the Optimizer class by writing the code from
Listing 5 below the placeholder comment.

 # PYTHON TASK 2
 # TODO: Create backtrack_routes method. This method must update the
 # self._routes list by comparing adjacent route costs, creating new
 # Route objects (based on the lower-cost alternative), and updating
 # the new routes with the values from the previous item in the
 # self._costs list (i.e. the next-higher row in the triangle).
 def backtrack_routes(self):
 left_routes = self._routes[0:-1]
 right_routes = self._routes[1:]
 prepended_costs = self._costs[len(self._routes) - 2]
 self._routes = map(lambda left, right, cost:
 Route(left).prepend(Step.left, cost) if left.cost <= right.cost
 else Route(right).prepend(Step.right, cost),
 left_routes, right_routes, prepended_costs)

Listing 5 - setupRoutes method

The first thing you might have noticed is that the Python version of this method is much
shorter than the Java version; this is partly due to the fact that we don't have any extra
for curly braces, partly due to the use of the map function, and partly due to the use of a
conditional expression (also known as a ternary operator, a conditional expression takes
three input expressions, evaluates one of them, and depending on whether it's true or
false, returns the value of one of the other two). Let's look at the method in more detail:

• We declare the local variables left_routes and right_routes, each of which
contains a slice (a portion of a sequence) of the _routes list. In the case of
left_routes, we're assigning to it the slice of _routes that starts with the first
item, and ends just before the last item. For right_routes, we're taking the slice
of _routes that starts with the second item and includes all remaining items in
the list. (These slices are some examples of the advanced list indexing features in
Python.)

• The item of the _costs list corresponding to the current row is assigned to the
local variable prepended_costs. (Note that we index _costs with the same
calculation we used in Java.)

• These three lists (left_routes, right_routes, prepended_costs) are used
together to create a new list, via the map function. The map function uses at least
two parameters:

Algorithms in Java and Python: The Triangle Route Problem 33

◦ First, a function that will be used to create the new list's items, using the items
from the existing lists. In this case, we're using a lambda (an anonymous
function, declared inline) that takes three parameters: left, right, and cost.
The second part of lambda is the expression (in terms of the lambda's
parameters) that will be evaluated for each set of values passed to the
lambda. In this case, the expression is a conditional expression that returns a
new Route instance based on left or right (with cost added) depending on
which one has the lower cost.

◦ The remaining parameters to map are the lists that it will use for input values.
Here, the lists are left_routes, right_routes, and prepended_costs.

The map function iterates implicitly over all of its input lists simultaneously.
Each set of list items (in this case, the ith item of left_routes, the ith item of
right_routes, and the ith item of prepended_costs) are passed as parameters to
the specified function (e.g. our lambda). The results are then gathered into a new
list.

• The list returned by the map function is assigned to the _routes list.

• Note that the parameters to map, and the two parts of lambda, are spread across
multiple lines. Python is more restrictive than Java in how lines may be broken:
line breaks between expressions inside parentheses or brackets are always
allowed; otherwise, line breaks require the explicit use of the backslash (“\”) as a
line-continuation character.

Fix any errors that NetBeans has marked in your code, then save your changes.

Python task 3: solve

Scroll down further in the optimizer.py file to locate the placeholder comment for task
3 (see Figure 29), our final programming task. Note that the solve method signature is
already written for us. Also, there's something we haven't seen before: the pass
statement. This placeholder statement serves a useful purpose: when a Python
statement must include a suite (as is the case for a method declaration), but none is
supplied, an error occurs; we can avoid that error by using pass.

34 Algorithms in Java and Python: The Triangle Route Problem

Figure 29

For this task, the code we need to write is almost identical to the code we wrote for the
Java version: we need to invoke the setup_routes method, and that then invoke the
backtrack_routes method repeatedly, until _routes contains only a single item.

Add the code from Listing 6 to optimizer.py. Be very careful not to re-write the
method signature. (On the other hand, the pass statement can be deleted, if desired.)

 # PYTHON TASK 3
 # TODO: Complete the solve method by adding code to call setup_routes and
 # to call backtrack_routes repeatedly, until self._routes has only one
 # item. (When complete, the pass instruction will no longer be
 # necessary.)
 def solve(self):
 self.setup_routes()
 while len(self._routes) > 1:
 self.backtrack_routes()

Listing 6 - solve method

This method is pretty self-explanatory, especially after writing the Java version.
However, note that the method calls include self; this is required, just as it is when
accessing an instance variable such as _routes. In fact, making the method calls in this
fashion causes the reference to the current Optimizer instance to be passed to the
methods as the value of the self parameter.

Fix any marked errors and save your changes.

Python task 4: Test the program

Run your program as before. If the code is correct, you'll see the same route and cost as
those produced by the Java implementation (see Figure 30). (Depending on the Python
version NetBeans is configured to use, the display details might be different than those
shown; nonetheless, the route steps and cost should match.)

Most of the errors we could potentially make while programming in Java we can also
make with Python. Of course, each language has its own wrinkles in that regard. Here
are a few to watch out for:

Algorithms in Java and Python: The Triangle Route Problem 35

Figure 30

• The fact that we don't declare variable or method types in Python makes for less
verbose code than we usually write in Java, but it also opens up the possibility of
accidentally assigning one type of value to a variable intended to store another
type. When we do that in Java, the compiler catches the erroneous assignment
early; in Python, it will show up unexpected results (or a runtime error, if we're
lucky) when we run the program.

• In Java, variables must be declared before they are used in any way. If we declare
the variable finalRowCosts, but then try to assign a value to finalrowcosts
(note the difference in capitalization), the Java compiler catches this, and makes
us correct it before compiling the program. In Python, however, a variable is
declared implicitly the first time we assign a value to it. This can result in very
unexpected results arising from simple typos, if we're not careful in our spelling
and capitalization.

• Inconsistent indentation, and indentation using a mixture of spaces and tabs, will
usually be caught by NetBeans (and some other IDEs) before we run a program;
however, it can sometimes elude early detection and produce a parsing error at
runtime. And if we've forgotten to indent something that's supposed to be part of
a suite, we'll probably get unexpected and incorrect results from the program
execution.

In this case, if our program returns unexpected results, one thing we can do is try
to step through the code manually, comparing it to the bottom-up algorithm (p.
7), or to the pseudocode version (see Appendix B) – to make sure that we
understand which operations are part of the iterated steps, and which should be
performed conditionally. If we're still confused, stepping through the code with a
debugger can help a lot.

• List slicing, list comprehension, and the map function are very powerful features
of Python, but they can be tricky to master. It's very easy to end up with a list of
a different length (or of a different dimension – e.g. a list of lists, instead of a list)
than we intended. Sometimes, this results in an error when accessing elements of
the list, just as an out-of-bounds array access in Java produces an error. In some
cases, however, the flexibility of Python list manipulation makes catching and
fixing these errors fairly difficult, since Python supports many different types of
list transformations with slight variations in syntax.

When we suspect something like this is happening, we can use the debugging
facilities in NetBeans to observe the values stored in the lists as the program
executes.

36 Algorithms in Java and Python: The Triangle Route Problem

• The ternary conditional expression in Python is ordered differently than
analogous constructs in C/C++, Java, Logo, and many other languages. In most
programming languages, the expression to be evaluated and tested is the first of
the three expressions that make up the ternary expression; in Python, it's the
second. Also, unlike Java (but like C and many other languages), Python can
treat the result of virtually any expression as a boolean (true or false) value. Given
these two factors, it's very easy to write the Python ternary expression
incorrectly, without the error being caught in parsing, compilation, or even at
runtime. (Ironically, this can be more of a problem for those with some
programming experience in other languages than for complete beginners.)

If your results don't match those shown in Figure 30, or if your program halts without
completing its calculations, use the supplied code listings, the information above, and
any error messages to try and resolve the problems.

Algorithms in Java and Python: The Triangle Route Problem 37

This page intentionally left blank.

38 Algorithms in Java and Python: The Triangle Route Problem

6. Conclusion

Summary discussion

In this lesson, you've seen a simple example of a combinatorial optimization problem.
You've also seen that the increase in the number of potential solutions quickly makes an
exhaustive search through all of them impossible (or practically so). On the other hand,
you've seen an algorithm that solves the problem quite efficiently – but here we run into
some questions that we haven't addressed yet:

• What does “efficient” mean, in the context of an algorithm for solving some
problem?

• How can we measure the efficiency of an algorithm? How can we do so without
implementing the algorithm on a computer first?

• Are there some problems for which having an efficient method for getting a
“good enough” solution is preferable to having a method that gets the best
solution, but does so much less efficiently? Can you think of any examples?

In completing the Java and Python tasks, you've gotten a small taste of what's involved
in implementing an algorithm in a computer program; you've also seen how some
processing concepts are expressed in very different ways in these two programming
languages. You probably haven't yet spent enough time programming in either
language to feel completely comfortable with it, but at least you've seen the tip of the
programming iceberg in each. Based on that experience, discuss the following
questions:

• What did you like about each of the two languages?

• What did you dislike about each?

• What aspects, of either language, did you find especially difficult to understand?

• What types of programs or projects do you think Java would be best suited for?

• What types of programs or projects do you think Python would be best suited
for?

• Of the features you saw in the two languages, were there any that you think
could be especially useful to you, in some project you're doing (or considering
doing)? What are they?

Algorithms in Java and Python: The Triangle Route Problem 39

Online resources for additional study and practice

There are many resources available to help you build your skills as a programmer, or as
a programming mathematician or scientist. In addition to the countless books and
traditional classes on programming, there are many free resources available online.

The standard installation of Python includes a tutorial that can help you learn its syntax
and explore the core libraries [6]. The standard Java installation doesn't include a
tutorial, but a very extensive one can be downloaded free of charge from the Oracle
Technology Network [7].

Beyond the tutorials, there are several puzzle and practice sites – some dedicated to
specific programming languages, others open to multiple languages. Of particular note
is CodingBat, which has several sets of practice problems on a variety of programming
concepts and techniques; many of the problems are posted in both Java and Python
versions [8]. Possibly the most powerful feature of CodingBat is the online execution
environment, allowing users to compile and test their code solutions from almost any
computer connected to the Internet.

For more experienced programmers – as well as programming students eager for a
challenge – Project Euler hosts an online collection of hundreds of puzzle problems
(including the one that inspired this lesson), ranging in difficulty from fairly easy to
very hard [9]. An important feature of this site is the discussion forum: when a person
submits a correct answer to a problem, access is granted to a discussion thread devoted
to that problem; members of the user community use these discussions to share their
solutions and learn from each other. Solving a problem and then seeing how others
apply different techniques and languages to the same problem is a great way to learn
new concepts – and to expand your programming skills from one language to many.

There are online databases of algorithms that can also be valuable resources – to
practitioners needing algorithms for specific tasks, and also to students who want to
learn more about some of the most important tools in computer science and applied
mathematics. Two such sites are the National Institute of Standards and Technology's
Dictionary of Algorithms and Data Structures, and Algorithmist [10],[11]. The NIST
DADS site is the more complete of the two, and it's more extensively cross-linked to
other algorithm-oriented sites. Algorithmist hasn't been in existence as long, but it's
structured as a wiki, with community members building the knowledge base in a
collaborative fashion, and it has a lot of potential beyond it's already solid collection.

Ultimately, whatever programming languages you want to learn, and however you
learn best, there are resources available to you. Take advantage of them.

40 Algorithms in Java and Python: The Triangle Route Problem

References

[1] Colin Hughes, “Problem 67: Using an efficient algorithm find the maximal sum
in the triangle?”, ProjectEuler, April 2004. [Online]. Available:
http://projecteuler.net/index.php?section=problems&id=67. [Accessed: Oct. 6,
2010].

[2] Wayne L Winston, Operations Research: Applications and Algorithms, Belmont,
CA: Wadsworth, 1994, pp. 1005-1011.

[3] Parag H. Dave, Himanshu B. Dave, Design and Analysis of Algorithms, India:
Pearson, 2008, pp. 269-308.

[4] “Dynamic programming”, Wikipedia, Oct. 4, 2010. [Online]. Available:
http://en.wikipedia.org/wiki/Dynamic_programming. [Accessed: Oct. 9, 2010].

[5] NetBeans v6.9.1. [Download]. Sun Microsystems, Inc., Aug. 4, 2010. Available:
http://netbeans.org/downloads/. [Accessed: Oct. 10, 2010].

[6] Python Programming Language. [Download]. Python Software Foundation,
Aug. 24, 2010. Available: http://www.python.org/download/. [Accessed: Oct.
10, 2010].

[7] The Java Tutorials. [Online and download]. Oracle Corp., Jul. 7, 2010. Available:
http://download.oracle.com/javase/tutorial/. [Accessed: Oct. 10, 2010].

[8] Nick Parlante, CodingBat, 2010. [Online]. Available:
http://www.codingbat.com. [Accessed: Oct. 11, 2010].

[9] Colin Hughes, Project Euler, Oct. 10, 2010. [Online]. Available:
http://www.projecteuler.net/. [Accessed: Oct. 11, 2010].

[10] Dictionary of Algorithms and Data Structures. [Online]. National Institute of
Standards and Technology, Sep. 27, 2010. Available: http://xw2k.nist.gov/dads/.
{Accessed: Oct. 12, 2010].

[11] Algorithmist. [Online]. Algorithmist.com, Oct. 11, 2010. Available:
http://www.algorithmist.com. [Accessed: Oct. 12, 2010].

Algorithms in Java and Python: The Triangle Route Problem 41

http://www.algorithmist.com/
http://xw2k.nist.gov/dads/
http://www.projecteuler.net/
http://www.codingbat.com/
http://en.wikipedia.org/wiki/Shuffling#Shuffling_algorithms
http://download.oracle.com/javase/tutorial/
http://en.wikipedia.org/wiki/Shuffling#Shuffling_algorithms
http://en.wikipedia.org/wiki/Shuffling#Shuffling_algorithms
http://www.python.org/download/
http://en.wikipedia.org/wiki/Shuffling#Shuffling_algorithms
http://netbeans.org/downloads/
http://en.wikipedia.org/wiki/Shuffling#Shuffling_algorithms
http://projecteuler.net/index.php?section=problems&id=67
http://projecteuler.net/

Acknowledgements

Development of this material and the accompanying program code was funded in part
by the New Mexico Supercomputing Challenge.

Janet Penevolpe, LD Landis, Roger Critchlow, and Drew Einhorn aided in the
development of this material and the accompanying program code, through their
questions, comments, and suggestions.

The underlying problem addressed in this material was inspired by Problem 67 at
Project Euler [1].

42 Algorithms in Java and Python: The Triangle Route Problem

http://www.supercomputingchallenge.org/

Appendix A — Solution to Pencil-and-paper Task 2

4 58

9 54 8 56

8 45 13 53 13 48

5 37 8 40 12 42 5 35

19 42 10 32 15 37 8 30 11 34

7 27 13 23 12 22 10 22 15 29 7 23

14 21 13 20 6 10 10 12 12 14 13 18 9 16

9 7 15 4 2 5 7 12

Figure 31 - Least-cost route for triangle in Figure 7 (p. 8); cost = 58

Algorithms in Java and Python: The Triangle Route Problem 43

This page intentionally left blank.

44 Algorithms in Java and Python: The Triangle Route Problem

Appendix B — Pseudocode for Least-cost Triangle Route Algorithm

Pseudocode is a description of an algorithm – more generally, a way of describing
algorithms – that uses grammar and notation common to many programming
languages, but avoids conventions specific to any single programming language.
Besides borrowing conventions from programming, pseudocode often uses notation
normally found in mathematical expressions as well. The main benefits of this are that
potential ambiguity is greatly reduced, and translation of pseudocode to actual
programming code is usually fairly straightforward.

Here's one way (among many) to use pseudocode to express the bottom-up algorithm
for the least-cost triangle route (p. 7):

• Given:

◦ n = number of rows in triangle

◦ c ij= value of item j in row i of triangle, where i∈{1,2, , n } , j∈{1, 2, , i }

◦ r ij= route from item j in row i to base of triangle (initially empty)

◦ concat a , b  = concatenation of text values a and b

• For i = n−1 down to 1:

◦ For j = 1 to i :

▪ If c i1 j ≤ c i1  j1 :

• c ij= cijc i1 j

• r ij= concat  'L' , ri1 j 
Otherwise:

• c ij= cijc i1  j1

• r ij= concat  'R' , ri1  j1
• r 1,1 is least-cost triangle route

• c1,1 is minimum triangle route cost

Algorithms in Java and Python: The Triangle Route Problem 45

This page intentionally left blank.

46 Algorithms in Java and Python: The Triangle Route Problem

Appendix C — Java Implementation

Notes

• The Java implementation is organized into the following packages and classes:

◦ org.nm.challenge.kickoff.triangleroute

▪ Optimizer (Optimizer.java)

▪ Route (Route.java)

▪ Step (Step.java)

◦ org.nm.challenge.kickoff.util

▪ TableFileParser (TableFileParser.java)

• In the interests of compactness, copyright notices have been stripped from these
source code listings. All copyrights asserted (and licenses granted) in the
“Copyright and License Information” section of this document are in force for all
source code listings.

• In the interests of compactness, comments and non-essential annotations have
been stripped from these source code listings. Refer to the accompanying source
code files for documentation comments, code comments, and annotations.

• Please note that because of the changes noted above, and some reformatting for
page width, line numbers in source code listings don't correspond to line
numbers in accompanying source code files.

Algorithms in Java and Python: The Triangle Route Problem 47

Optimizer.java

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

package org.nm.challenge.kickoff.triangleroute;

import java.io.FileNotFoundException;
import java.io.IOException;
import org.nm.challenge.kickoff.util.TableFileParser;

public class Optimizer {

 public static final String DEFAULT_DATA_FILE = "data.txt";
 public static final String DEFAULT_DELIMITER = "\\s+";

 private int[][] costs;
 private Route[] routes;

 public static void main(String[] args) {
 try {
 String dataFile = DEFAULT_DATA_FILE;
 String delimiter = DEFAULT_DELIMITER;
 if (args.length > 1) {
 dataFile = args[0];
 if (args.length > 2) {
 delimiter = args[1];
 }
 }
 Optimizer solver = new Optimizer(dataFile, delimiter);
 solver.solve();
 System.out.println(solver.getSolution());
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }

 public Optimizer(String dataFile, String delimiter)
 throws FileNotFoundException, IOException {
 costs = new TableFileParser(dataFile, delimiter).toIntArray();
 routes = null;
 }

 public Route getSolution() {
 return ((null != routes && 1 == routes.length) ?
 routes[0] : null);
 }

48 Algorithms in Java and Python: The Triangle Route Problem

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

 private void setupRoutes() {
 int[] finalStepCosts = costs[costs.length - 1];
 routes = new Route[finalStepCosts.length];
 for (int i = 0; i < finalStepCosts.length; i++) {
 routes[i] = new Route(finalStepCosts[i]);
 }
 }

 private void backtrackRoutes() {
 Route[] result = new Route[routes.length - 1];
 int[] prependedCosts = costs[routes.length - 2];
 for (int i = 0; i < prependedCosts.length; i++) {
 Route leftRoute = routes[i];
 Route rightRoute = routes[i + 1];
 if (leftRoute.getCost() <= rightRoute.getCost()) {
 result[i] = new Route(leftRoute)
 .prepend(Step.LEFT, prependedCosts[i]);
 }
 else {
 result[i] = new Route(rightRoute)
 .prepend(Step.RIGHT, prependedCosts[i]);
 }
 }
 routes = result;
 }

 public void solve() {
 setupRoutes();
 while (routes.length > 1) {
 backtrackRoutes();
 }
 }

}

Algorithms in Java and Python: The Triangle Route Problem 49

Route.java

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

package org.nm.challenge.kickoff.triangleroute;

import java.util.LinkedList;

public class Route {

 private static final char STARTING_POINT = '*';
 private static final char LEFT_PATH = 'L';
 private static final char RIGHT_PATH = 'R';
 private static final String STRING_PATTERN = "%s -> %d";

 private LinkedList<Step> steps;
 private int cost;

 public Route(int cost) {
 steps = new LinkedList<Step>();
 this.cost = cost;
 }

 public Route(Route source) {
 steps = new LinkedList<Step>(source.steps);
 cost = source.cost;
 }

 public Route prepend(Step step, int cost) {
 steps.add(0, step);
 this.cost += cost;
 return this;
 }

 public Route append(Step step, int cost) {
 steps.add(step);
 this.cost += cost;
 return this;
 }
 public int getCost() {
 return cost;
 }

50 Algorithms in Java and Python: The Triangle Route Problem

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

 public String toString() {
 StringBuilder buffer = new StringBuilder();
 boolean firstRow = true;
 for (Step step : steps) {
 if (!firstRow) {
 buffer.append((step == Step.LEFT) ?
 LEFT_PATH : RIGHT_PATH);
 }
 else {
 buffer.append(STARTING_POINT);
 firstRow = false;
 }
 }
 return String.format(STRING_PATTERN, buffer.toString(), cost);
 }

}

Algorithms in Java and Python: The Triangle Route Problem 51

Step.java

1
2
3
4
5
6

package org.nm.challenge.kickoff.triangleroute;

public enum Step {
 LEFT,
 RIGHT;
}

52 Algorithms in Java and Python: The Triangle Route Problem

TableFileParser.java

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

package org.nm.challenge.kickoff.util;

import java.io.BufferedReader;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.util.Arrays;
import java.util.LinkedList;

public class TableFileParser {

 private String[][] table;

 public TableFileParser(String fileName, String delimiterRegex)
 throws FileNotFoundException, IOException {
 this(new File(fileName), delimiterRegex);
 }

 public TableFileParser(File file, String delimiterRegex)
 throws FileNotFoundException, IOException {
 FileReader reader = null;
 BufferedReader buffer = null;
 LinkedList<String[]> work = new LinkedList<String[]>();
 String line;
 try {
 reader = new FileReader(file);
 buffer = new BufferedReader(reader);
 while (null != (line = buffer.readLine())) {
 if (line.trim().length() > 0) {
 String[] values = line.trim().split(delimiterRegex);
 work.add(values);
 }
 }
 }
 finally {
 if (null != buffer) {
 buffer.close();
 }
 if (null != reader) {
 reader.close();
 }
 table = work.toArray(new String[0][]);
 }
 }

Algorithms in Java and Python: The Triangle Route Problem 53

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

 public String[][] toStringArray() {
 String[][] result = new String[table.length][];
 for (int i = 0; i < table.length; i++) {
 result[i] = Arrays.copyOf(table[i], table[i].length);
 }
 return result;
 }

 public int[][] toIntArray() {
 int[][] result = new int[table.length][];
 for (int i = 0; i < table.length; i++) {
 result[i] = new int[table[i].length];
 for (int j = 0; j < table[i].length; j++) {
 result[i][j] = Integer.parseInt(table[i][j]);
 }
 }
 return result;
 }

 public double[][] toDoubleArray() {
 double[][] result = new double[table.length][];
 for (int i = 0; i < table.length; i++) {
 result[i] = new double[table[i].length];
 for (int j = 0; j < table[i].length; j++) {
 result[i][j] = Double.parseDouble(table[i][j]);
 }
 }
 return result;
 }

}

54 Algorithms in Java and Python: The Triangle Route Problem

Appendix D — Python Implementation

Notes

• The Python implementation is organized into the following modules and classes:

◦ optimizer (optimizer.py)

▪ Optimizer

◦ triangle_route (triangle_route.py)

▪ Route

▪ Step

◦ parser_util (parser_util.py)

▪ TableFileParser

• In the interests of compactness, copyright notices have been stripped from the
source code listings included here. All copyrights asserted (and licenses granted)
on the copyright page (p. 2) of this document are in force for all source code
listings.

• In the interests of compactness, comments and non-essential annotations have
been stripped from the source code listings included here. Refer to the
accompanying source code files for documentation comments, code comments,
and annotations.

• Please note that because of the changes noted above, and some reformatting for
page width, line numbers in source code listings don't correspond to line
numbers in accompanying source code files.

Algorithms in Java and Python: The Triangle Route Problem 55

optimizer.py

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

import sys

from parser_util import TableFileParser
from triangle_route import Route

class Optimizer(object):

 def __init__(self, data_file, delimiter):
 self._costs = TableFileParser(data_file, delimiter).ints()
 self._routes = None

 @property
 def solution(self):
 return (self._routes[0]
 if self._routes is not None and len(self._routes) == 1
 else None)

 def setup_routes(self):
 self._routes = []
 final_step_costs = self._costs[-1]
 self._routes = [Route(cost) for cost in final_step_costs]

 def backtrack_routes(self):
 left_routes = self._routes[0:-1]
 right_routes = self._routes[1:]
 prepended_costs = self._costs[len(self._routes) - 2]
 self._routes = map(lambda left, right, cost:
 Route(left).prepend(Step.left, cost) if left.cost <= right.cost
 else Route(right).prepend(Step.right, cost),
 left_routes, right_routes, prepended_costs)

 def solve(self):
 self.setup_routes()
 while len(self._routes) > 1:
 self.backtrack_routes()

if __name__ == "__main__":
 default_params = ['data.txt', None]
 data_file, delimiter = map(lambda default, actual:
 actual if actual is not None else default,
 default_params, sys.argv[1:])[:2]
 opt = Optimizer(data_file, delimiter)
 opt.solve()
 print(opt.solution)

56 Algorithms in Java and Python: The Triangle Route Problem

triangle_route.py

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

import string

class Route(object):

 def __init__(self, source=None):
 if isinstance(source, Route):
 self._steps = source._steps[:]
 self._cost = source._cost
 elif source is not None:
 self._steps = []
 self._cost = source
 else:
 self._steps = []
 self._cost = 0

 def prepend(self, step, cost):
 self._steps.insert(0, step)
 self._cost += cost
 return self

 def append(self, step, cost):
 self._steps.append(step)
 self._cost += cost
 return self

 def __str__(self):
 result = ['*'] + [('R' if (step == Step.right) else 'L')
 for step in self._steps]
 return '%s -> %d' % (string.join(result, ''), self._cost)

 @property
 def cost(self):
 return self._cost

class Step(object):

 left = 0
 right = 1

Algorithms in Java and Python: The Triangle Route Problem 57

parser_util.py

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

from __future__ import with_statement

class TableFileParser(object):

 def __init__(self, file_name, delimiter):
 with open(file_name) as file:
 self._table = [line.strip().split(delimiter)
 for line in file
 if 0 != len(line.strip())]

 def strings(self):
 return [row[:] for row in self._table]

 def ints(self):
 return [[int(col) for col in row] for row in self._table]

 def floats(self):
 return [[float(col) for col in row] for row in self._table]

58 Algorithms in Java and Python: The Triangle Route Problem

	Copyright and License Information
	Table of Contents
	1. Introduction
	Definition and a simple example
	Pencil-and-paper task 1: Find the minimum-cost triangle route
	Solution
	Too many routes?
	Discussion: Approaches for solving larger cases

	2. A More Efficient Method
	Solving from the bottom up
	Bottom-up algorithm for finding the least-cost triangle route
	Pencil-and-paper task 2: Using the bottom-up algorithm
	Dynamic programming
	What's it good for?

	3. General Implementation Features
	Introduction
	Data layout
	Development Environment

	4. Java Implementation
	Open the Java project
	Java task 1: setupRoutes
	Java task 2: backtrackRoutes
	Java task 3: solve
	Java task 4: Test the program

	5. Python Implementation
	Open the Python project
	Python task 1: setup_routes
	Python task 2: backtrack_routes
	Python task 3: solve
	Python task 4: Test the program

	6. Conclusion
	Summary discussion
	Online resources for additional study and practice

	References
	Acknowledgements
	Appendix A — Solution to Pencil-and-paper Task 2
	Appendix B — Pseudocode for Least-cost Triangle Route Algorithm
	Appendix C — Java Implementation
	Notes
	Optimizer.java
	Route.java
	Step.java
	TableFileParser.java

	Appendix D — Python Implementation
	Notes
	optimizer.py
	triangle_route.py
	parser_util.py

