
Algorithms in Java:
Shuffling and Random Numbers

Nicholas Bennett
Grass Roots Consulting

nickbenn@g-r-c.com

July 2010

mailto:nickbenn@g-r-c.com

Copyright and License

© 2010, Nicholas Bennett. This document and all accompanying source code is licensed
under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States
License. Permission is granted to copy, distribute, and display this document and the
accompanying source code – and derivative works based on this document and the
accompanying source code – for non-commercial purposes, provided that this notice is
preserved, and provided that any derivative work is licensed under identical
conditions.

Last modified: 11 July 2010.

http://creativecommons.org/licenses/by-nc-sa/3.0/us/
http://creativecommons.org/licenses/by-nc-sa/3.0/us/
mailto:nickbenn@g-r-c.com
http://creativecommons.org/licenses/by-nc-sa/3.0/us/

Algorithms

Introduction

It's impossible to study programming – or even talk in depth about it – without talking
about algorithms. They're an essential part of programming. Fortunately, all of us –
programmers and non-programmers alike – have experience with algorithms. Every
time you give someone driving directions; every time you use a recipe to cook; every
time you follow instructions for using a piece of software – all of these activities (and
countless others) involve algorithms.

So what is an algorithm? Simply put, an algorithm is a set of instructions, directed
toward solving a specific problem or accomplishing a specific, finite goal.

What Makes an Effective Algorithm?

In general, ambiguity doesn't make for a good algorithm; this is particularly true in
programming, because computers are mostly incapable of knowing what we want them
to do, unless we spell it out precisely. So the algorithms we use should also be precise –
even before we translate them into a programming language.

An effective algorithm usually has the following characteristics:

• Clear conditions of application: What task is the algorithm intended to
accomplish, and what are the requirements for us to be able to use it?

• Initialization steps & starting conditions: What do we do to prepare our data for
the algorithm? How can we tell if we're ready to proceed?

• Explicit stopping conditions and states: How do we know when we're done?
How do we know whether we met the desired goal?

• Unambiguous steps that lead from the starting conditions to the stopping
conditions.

Note that “unambiguous” is a subjective term. No matter how careful we are, there will
always be details left out that the writer assumes are understood. This is a problem in
some cases, but not others. For example, a complicated recipe will certainly omit
definitions for terms assumed to be understood by an experienced chef; if the recipe
isn't intended for beginners, including such definitions would be a waste of space.

Algorithms in Java: Shuffling and Random Numbers 3

Shuffling: The Flip Side of Sorting

The shuffling problem is easily stated: How can we rearrange a list of items so that the
order is random and fair?

Fortunately, this isn't a difficult problem to solve – but it's also easy to solve it
incorrectly [1], [2]. There are two widely used, effective approaches to shuffling in
computer programs [3]:

Sorting on a random number

1. Assign a randomly generated value to each item to be shuffled.

2. Sort the items, in order of the assigned random numbers.

3. Stop. The list is now shuffled.

Though the need for sorting makes this method less efficient than the one that follows,
it's very easy to implement in some languages and environments – for example, this can
be a good approach for retrieving and presenting database records in a random order.

Durstenfeld's version of the Fisher-Yates shuffle (aka Knuth shuffle) [4]

1. Begin with the list of items X , containing the N items x1, x2,  , x N .

2. For each integer value j , starting at 1 and ending with N−1 , do the following:

a. Generate a random value k , which can be any one of { j , j1,  , N } ; each
of the values must be equally likely to be selected.

b. Exchange the positions of xk and x j in the list. Note that it's possible that
k = j ; obviously, no exchange is needed when that's the case.

3. Stop. The list is now shuffled.

As we repeat steps 2a-b (i.e. iterate) with values of j from 1 to N−1 , each randomly
selected item is shuffled by exchanging it with the first unshuffled item. In effect, the list
is divided into two parts, one shuffled and one unshuffled, with the latter growing as
the former shrinks, until no unshuffled items remain.

Exercise 1: Shuffling a List of Six Items by Rolls of a Die

Using a six-sided die to generate random numbers, let's shuffle the words “apple”,
“banana”, “chile”, “donut”, “egg”, and “flan” into a random order. To help us keep
track of the items as we shuffle them, we'll use tables 1-3.

4 Algorithms in Java: Shuffling and Random Numbers

Items (N = Number of Items = 6)

Position (i)

Iteration
(j)

Roll
(k) 1 2 3 4 5 6

Initial apple banana chile donut egg flan

1

2

3

4

5

Table 1: Example of Fisher-Yates shuffle, initial state

We start at row 1 – i.e. the row where 1 appears in the Iteration (j) column – and roll the
die to get a value of k . For example, assume we roll a 4. We write this value in the Roll
(k) column. Next, we copy the six words in our list from the previous row to the current
row. As we do so, we exchange the item in column 4 (since that was our roll) with the
first unshuffled item, which is in column 1; thus we exchange “donut” with “apple”.
The result appears in table 2.

Items (N = Number of Items = 6)

Position (i)

Iteration
(j)

Roll
(k) 1 2 3 4 5 6

Initial apple banana chile donut egg flan

1 4 donut banana chile apple egg flan

2

3

4

5

Table 2: Example of Fisher-Yates shuffle, after 1 iteration

(The line that zig-zags through the table divides the list into shuffled and unshuffled
items. In our example, “donut” is now shuffled, and will stay in column 1.)

In each successive iteration (a repeated set of steps in an algorithm), we move down one
row (increasing the value of j by 1) and roll the die. If the roll is less than the value in

Algorithms in Java: Shuffling and Random Numbers 5

the Iteration (j) column, we keep rolling until we get a value greater than or equal to j ;
then, we write our roll in the Roll (k) column. Finally, we copy the items from the
previous row to the current row, exchanging the items in columns j and k .

Assume that in iteration 2, we roll a 1. However, because 1 is less than the current value
of j , we roll again; this time, we get a 3, so we write that value in the Roll (k) column.
Then, we copy our six items from the previous row to the current row, exchanging the
item in column k (or 3), “chile”, with the item in column j (or 2), “banana”. Our
randomly selected item, “chile”, is now shuffled.

Items (N = Number of Items = 6)

Position (i)

Iteration
(j)

Roll
(k) 1 2 3 4 5 6

Initial apple banana chile donut egg flan

1 4 donut banana chile apple egg flan

2 3 donut chile banana apple egg flan

3

4

5

Table 3: Example of Fisher-Yates shuffle, after 2 iterations

Complete this shuffle on your own, by performing iterations 3-5.

Exercise 2: Additional Questions and Tasks

I. What is a fair shuffle? Does random always imply fair?

II. If each iteration of steps 2a-b of the Fisher-Yates algorithm shuffles one item in
the list, how is it that we're able to shuffle 6 items in 5 iterations? More generally,
how are we able to shuffle all N items in N−1 iterations?

III. In any given iteration of steps 2a-b of the Fisher-Yates shuffle, it's possible that
item j will trade places with itself. Even if we don't need to do anything to
exchange an item with itself, it might seem inefficient to allow this to happen.
Would eliminating this possibility, by limiting our random selection to the range
from j1 to N , still give us a complete, fair shuffle?

IV. Is there any value in performing a Fisher-Yates shuffle multiple times in a row,
similar to the way we would manually shuffle a deck of cards several times?

6 Algorithms in Java: Shuffling and Random Numbers

Shuffling with Java: Lotteries

Introduction

Lotteries have existed – legally and illegally, and with many variations – for over 2000
years. In the U.S.A., lotteries were illegal for most of the 20th century, but by the 1960s,
some states were modifying their constitutions to allow state lotteries. 43 states now run
(or participate in) lotteries, using them as a source of state revenues. All of these
lotteries set the payoffs so that the total amount paid to the winners is always much less
than the total amount paid in, giving the state an unbeatable advantage.

In most of the state lotteries, the drawing of numbers is done with actual balls in a
container. However, some lotteries are conducted electronically; also, state lotteries
usually offer some form of “quick pick” option, letting players buy lottery tickets with
the numbers selected at random by computer. So we'll write a Java program that
generates our own lottery draws or quick picks.

The next three exercises assume that you're using the DrJava development environment
[6]. Other IDEs can be used to write and compile the code in exercises 3 and 5, but
exercise 4 depends on the interactive features of DrJava.

Exercise 3: Writing a Lottery Class in Java

One of the first things we need to do, when writing any Java program, is decide what
classes we need. In Java, classes are units of Java code, which generally perform one or
more of three primary roles:

• A set of related methods (named procedures that perform specific tasks) that
operate on variables of the basic Java data types, or object types defined by other
classes.

• A set of methods to manage the execution (and termination) of Java programs,
applets, etc.

• An encapsulation of the attributes and behaviors of a type of object, often
corresponding to a physical or logical object related to the problem we're
working on. For example, a traffic simulation program might have Vehicle
and TrafficSignal classes that define variables and methods for managing
the speed, location, and direction of vehicles, and the states of traffic signals.

Algorithms in Java: Shuffling and Random Numbers 7

In this case, we need a class that encapsulates the data for a lottery – i.e. the set of
numbers that can be selected – with one very important behavior:

• Select a subset of the numbers at random, without replacement – i.e. without
putting each number back after it's selected. In most lotteries, the order in which
the numbers are selected is irrelevant – in fact, they're generally sorted in
ascending order before they're announced. So our class will follow that example,
and sort the selected subset of numbers in ascending order.

We'll begin by creating a Lottery class, with an array of integers to hold the lottery
numbers, and a constructor that will create and fill the array. (We'll learn what those
terms mean in the next few minutes.)

Create a new class file (with the File/New menu or the New button), and write the
following code (the line numbers are for reference only; don't write them in your code):

1
2
3
4
5
6
7
8
9
10
11
12

public class Lottery {
 private int[] numbers;
 public Lottery(int maximum) {
 numbers = new int[maximum];
 for (int i = 0; i < numbers.length; i++) {
 numbers[i] = i + 1;
 }
 }
}

Let's review the most important elements of the code:

• Our class is named Lottery, and it has public visibility (line 1).

• The left and right curly braces on lines 1 and 12 (respectively) enclose the code
that makes up the implementation or body of the Lottery class.

• Inside the body of the class, we have the private variable numbers (line 3). It's
a reference to an int[], or an array of integers. An array is a variable that can
hold multiple items of the same type, where each item is accessed by a numbered
index – e.g. numbers[0], numbers[1], and numbers[2] are the first three
integers in the numbers array. (In most programming languages, we start
counting array elements with 0, instead of 1.)

8 Algorithms in Java: Shuffling and Random Numbers

• A public constructor begins on line 5. A constructor is a special kind of method,
whose job is to initialize the data used by an object of this class type. A
constructor always has the same name as the class, and no return type is
specified. Inside the parentheses that follow the name, we see that when this
constructor is called, some additional information must be provided: an int
called maximum. Later, when we're using our Lottery class type, we'll need to
provide this additional data when we call the constructor.

Inside the curly braces of the constructor (lines 5 and 10), we have the body of
the constructor – i.e. the code that initializes our lottery numbers. First we use the
new keyword to allocate space for the numbers array, with enough elements for
the range of numbers from 1 to maximum (line 6).

Next, we need to put our lottery numbers into the array – but remember, the
indices for accessing array elements begin with 0. So we use the for statement
(line 7) to iterate over the elements in the array, using the int variable i as an
iteration counter with a starting value of 0, and continuing as long as i is less
than maximum, After each iteration, we increment the value of i (using i++). In
each iteration, we execute the code between the curly braces on lines 7 and 9; in
that code, we place into element i of the array a value equal to one more than i;
for example, we put the number 1 into element 0, 2 into element 1, etc. – all the
way up to the value of maximum, which we put into element maximum - 1.

Before we go any further, make sure you've saved your work. Since the class is named
Lottery, the file name must be Lottery.java. – i.e. with the exact same spelling and
capitalization as the class name, and with the .java extension (DrJava adds this
extension automatically, if you don't specify one).

Next, use the Compile button to compile the code you've written – making sure to fix
any errors that are reported along the way, until your code compiles without error.
(Ask for help from the instructors as needed.)

So far, we've taken care of the first part of the required functionality. Now, we'll write
code to select a subset of the numbers at random. We'll use shuffling to mix up the
numbers, but we're going to change the algorithm just a bit. Remember that in order to
shuffle N items, we perform N−1 iterations of selecting an unshuffled item at random
and swapping it with the last unshuffled item. But in this case, we don't really need to
shuffle all of the numbers; we only need to shuffle enough four our subset.

In writing the code that follows, the code you already wrote is grayed-out. Don't re-
write the grayed-out code; simply add the new code to it.

Algorithms in Java: Shuffling and Random Numbers 9

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

import java.util.Arrays;
import java.util.Random;
public class Lottery {

 private int[] numbers;
 private Random rng = new Random();
 public Lottery(int maximum) {
 numbers = new int[maximum];
 for (int i = 0; i < numbers.length; i++) {
 numbers[i] = i + 1;
 }
 }

 private void mix(int iterations) {
 for (int i = 0; i < iterations; i++) {
 int shuffleIndex =
 i + rng.nextInt(numbers.length - i);
 int temp = numbers[shuffleIndex];
 numbers[shuffleIndex] = numbers[i];
 numbers[i] = temp;
 }
 }
 public int[] pick(int numbersToPick) {
 int[] selection;
 mix(numbersToPick);
 selection = Arrays.copyOf(numbers, numbersToPick);
 Arrays.sort(selection);
 return selection;
 }
}

Let's review the additions, starting at the top:

• We added two import statements (lines 1-2). These tell Java that our code will
use the Arrays and Random classes, both located in the java.util package.

• We've added the private variable rng to the class, in line 7. The type is
Random, a class that implements the standard Java random number generator.
We've also created and initialized this variable by calling the Random
constructor, using the new keyword.

10 Algorithms in Java: Shuffling and Random Numbers

• Lines 16-24 contain the declaration and body of the private (not visible outside
the class) method mix. When this method is called, it expects to receive an int,
referred to by the method as iterations. This is the number of iterations of
steps 2a-b in the Fisher-Yates shuffle that this method will execute; since each
iteration shuffles one element in the numbers array, this is also the number of
lottery numbers shuffled by this method.

We use the for statement (line 17), with the counter variable i, to repeat the
code between the curly braces on lines 17 and 23 a total of iterations times.

In lines 18-19, a local variable (a variable that exists only inside the current block of
statements) named shuffleIndex is given a random integer value (generated
by rng) between i (inclusive) and numbers.length (exclusive).

Now, we exchange two items in the numbers array: First, the value of the lottery
number in the shuffleIndex element of numbers is assigned to temp. Then,
we take the lottery number in the i element of numbers and put it in the
shuffleIndex element. Finally, we take the lottery number we stored in temp,
and put it into the i element of the numbers array. This has the effect of
swapping a randomly selected unshuffled item with the first unshuffled item in
the numbers array; this randomly selected item is now shuffled.

• We've declared the public method pick (lines 26-33), which returns an int[],
or array of integers. When this method is called, an additional piece of data must
be provided: an int, which this method refers to as numbersToPick.

In the body of the pick method, we declare a local variable named selection
(line 27). Like the numbers variable, selection refers to an array of integers.

Next, we call the mix method, specifying numbersToPick (line 28). The mix
method shuffles that many lottery numbers to the start of the numbers array.

After mix does the shuffling, we copy the shuffled numbers from the numbers
array to the selection array, using the copyOf method in the Arrays class
(lines 29-30). In this call, we specify the array we're copying data from
(numbers), and the number of elements (starting with element 0) to copy.

We use another method of the Arrays class, sort, to sort the elements of the
selection array in ascending order (line 31).

Finally, we return the selection array as the result of this method (line 32).

Algorithms in Java: Shuffling and Random Numbers 11

Save and compile the Lottery class. If any error messages appear, fix the reported
problems, then save and compile again, until you can compile without any errors.

Exercise 4: Testing the Lottery Class Interactively

Our Lottery class is complete for our purposes today, but it isn't a Java program.
Fortunately, the Interactions pane of DrJava is very handy for experimenting with Java,
without first having to write complete Java programs.

In the Interactions pane, type the following to create a new variable of the Lottery
type, with a range of numbers of 1 through 40. Note that the greater-than sign (>) isn't
part of the text you type; it's a prompt character that DrJava displays. Also, you need to
press the enter key at the end of each line you type.

> Lottery lotto = new Lottery(40);

If you typed the line correctly, you should see the input prompt (>) again.

Now we have a variable lotto, of the Lottery type, ready to select numbers in the
range from 1 to 40. Let's use the pick method to have it pick 6 numbers for us:

> lotto.pick(6)

Notice that there's no semicolon at the end of the line this time. Java requires semicolons
at the ends of statements; however, the DrJava Interactions pane recognizes a statement
without a semicolon as shorthand for “display the value of this expression”.

After you hit the enter key, did you see an array of 6 distinct numbers between 1 and 40,
sorted in ascending order?

Have lotto pick a few more sets of 6 numbers, using the same statement as before.
(You can use the arrow keys to cycle through the lines previously typed.)

We can also experiment with different kinds of lotteries. For example, in keno, the
casino has a fixed draw size (usually 20 numbers from 1 to 80), but the subsets picked
by a player don't have to be the same size as the casino's draw.

Use this code in the Interactions pane, to create a variable of the Lottery type with
numbers ranging from 1 to 80, and then to draw and display 20 numbers:

> Lottery keno = new Lottery(80);
> keno.pick(20)

12 Algorithms in Java: Shuffling and Random Numbers

Exercise 5: Writing a Java Program That Uses the Lottery Class

So far, we've tested our Lottery class using the DrJava Interactions pane. However,
most people don't use development environments (like DrJava) to run Java programs;
instead, they rely on the standard Java launcher. For now, we'll keep using DrJava, but
we'll write a Java program that can be launched from a Windows or Unix/Linux
command line.

For this exercise, we'll write a program to generate several picks for the NM Lottery
Roadrunner Cash game, in which the player picks 5 separate numbers from 1 to 37 [5].

For a Java program, we start (again) with a class. Create a new file, and type this code:

1
2
3
4
5
6
7
8
9
10
11

public class Roadrunner {
 private static final int MAXIMUM_NUMBER = 37;
 private static final int NUMBER_TO_PICK = 5;
 private static final int NUMBER_OF_TICKETS = 10;
 public static void main(String[] args) {
 }
}

Let's take a look at the code in more detail:

• As before, we declare our class with the class keyword, the name of the class,
and a set of curly braces (lines 1 and 11) to hold the implementation of the class.
We also set the visibility of the class to public (line 1), so that it can be seen
from other classes – and most importantly, by the Java launcher.

• Just inside the class (lines 3-5), we have three variables with an important
combination of keywords. A variable that's declared static final is actually
a constant: once we assign an initial value to a constant, the Java compiler won't
let a different value be assigned. We've assigned initial values to all three of these
constants, so we can be certain that those values won't change.

In these constants, we've stored the upper limit of the range of numbers for this
lottery (line 3), how many numbers must be selected in each pick (line 4), and
how many separate sets of numbers we'll pick (line 5).

Algorithms in Java: Shuffling and Random Numbers 13

• In line 7, we see the static keyword again – this time with the main method.
The most important thing to know about this is that when the Java launcher tries
to run a class as a Java program, it looks in that class for a public static
method called main, which doesn't return any data when it's done (that what
void return type means). Finally, inside the parentheses of the main method
declaration (line 7), we see that the method expects to receive an array of String
objects; this is also a requirement for the main method of a Java program. (The
arguments are values that can be specified on the command line when a Java
program is launched – but our program will ignore any additional information
passed to it this way.)

If the Java launcher finds a method with the public static void
main(String[]) signature, it calls it; if it doesn't find it, it reports an error and
terminates execution.

As with our earlier methods, we see that the main method has a set of curly
braces (lines 7 and 9); we'll write the body of the method – i.e. the top-level steps
of our Roadrunner program – between these braces.

Save the file. Be sure to save it in the same directory as your Lottery.java file. Also,
remember that the file name must match the class name (with the same spelling and
capitalization), with the addition of the .java extension; in this case, the file must be
named Roadrunner.java.

Compile the file. If you get error messages, read them carefully to try to figure out
what's wrong, and try to fix the problems.

Some of the last few lines of code we need to add will look familiar after the typing you
did in the last exercise. Basically, we're putting the kinds of statements that you typed
manually in the Interactions pane into our program. However, there are a couple of
things we need to include in our code that the Interactions pane did for us
automatically. First, it recognized, by our leaving a semicolon off the end of a line, that
we wanted to display a value on the screen; second, it converted the array of integers
we wanted to display into a string (a sequence of text characters, which can include
letters, numbers, punctuation, etc.), using an easy-to-read format. Fortunately, the code
to convert and display an array isn't difficult to write. (Remember not to retype the
grayed-out code.)

14 Algorithms in Java: Shuffling and Random Numbers

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

import java.util.Arrays;
public class Roadrunner {

 private static final int MAXIMUM_NUMBER = 37;
 private static final int NUMBER_TO_PICK = 5;
 private static final int NUMBER_OF_TICKETS = 10;

 public static void main(String[] args) {
 Lottery lotto = new Lottery(MAXIMUM_NUMBER);
 for (int i = 1; i <= NUMBER_OF_TICKETS; i++) {
 int[] selection = lotto.pick(NUMBER_TO_PICK);
 String selectString = Arrays.toString(selection);
 System.out.printf("Ticket #%d: %s\n",
 i, selectString);
 }
 }

}

There are a few things to notice this time:

• Once again, we import the Arrays class from the java.util package (line 1).

• We're using the for keyword to iterate (line 11, with curly braces in lines 11 and
16). This time, we're using it to count up to the desired number of “tickets” - i.e.
the separate subsets of lottery numbers the program is drawing for us.

• For each ticket, numbers are drawn using the pick method (line 12), and the
result is assigned to the local variable selection.

• In line 13, we use the Arrays.toString method to convert the int[] with the
selected subset of numbers to a String, storing the result in the selectString
variable for later display.

• One piece of code that might look unfamiliar is the System.out.printf
method call in lines 14-15. This method writes data to standard output, a text-
based console display. Primitive as it is, this is one of the easiest ways to display
output from simple programs.

The printf method is used to format and write data to standard output, or to a
file. With this method, we first specify a format string, which may contain static
text along with one or more placeholders (you can spot these placeholders easily:

Algorithms in Java: Shuffling and Random Numbers 15

they start with the percent sign); then, we pass the data to be displayed, as
additional parameters in the method call. Before the text is written out, the
placeholders in the format string are replaced by the data values.

In this case, the format string is: “Ticket #%d: %s\n”. The placeholders are
%d (for an integer value displayed as a decimal number) and %s (for a string
value); the \n represents the “new line” character, which sends output to the
next line. The first placeholder is replaced by the value of i (the variable we're
using to count up the tickets), and the second placeholder is replaced by the
value of selectString.

Save, compile, and run your program. Is the result what you expected to see?

Exercise 6: Additional Questions and Tasks

I. In all, how many different Roadrunner picks are possible? In other words, how
many combinations (distinct subsets, without regard to the order of items in a
subset) of 5 numbers from the set {1, 2, …, 37} are possible?

II. Can you think of a way to modify your Roadrunner class, so that you could use
it to check whether the method we're using generates all possible combinations,
in approximately equal proportions?

III. Modify your program (or create a new Keno class with a main method, that can
be executed as a Java program) so that 20 numbers in the range from 1 to 80 are
drawn, for an automated keno game.

IV. Modify your program (or create a new Java program class) to generate quick
pick numbers for PowerBall, where 5 numbers from 1 to 59 are selected without
replacement, and then a 6th number from 1 to 39 is selected.

16 Algorithms in Java: Shuffling and Random Numbers

Random and Pseudo-random Numbers

The Need for Randomness

In previous exercises, we used Java's random number generator class (Random) to
generate random values that we used to shuffle lottery numbers. Many different kinds
of computer programs benefit from random numbers; when we're working on
computational science projects, and building scientific simulations, the need for random
numbers becomes even more critical.

But there's a wrinkle: contrary to what many might think, very little that happens in
most computers – at least in an easily observed fashion – is truly random. Fortunately
for us, we often don't need true randomness: numbers that appear random, even
though they're not, are good enough in many cases. Numbers of this type are called
pseudo-random numbers.

The Appearance of Randomness

What can we observe in this portion of a sequence of numbers?

S = 0, 5, 6, 3, 12, 1, 2, 15, 8, 13, 14, 11, 4, 9, 10, 7, 

At first, we might see some apparently random numbers, all less than 16. We might
notice that none of the numbers is repeated – but we could chalk that up to having such
a short portion of the sequence (or, we might speculate that the numbers are being
selected by sampling without replacement). Looking closer, we might suspect some
patterns in the differences between successive numbers; maybe that's just a coincidence.
Finally, we might notice that the sequence alternates between odd and even values; that
seems very unlikely to be a coincidence.

Let's look at more of the sequence:

S = 0, 5,6,3, 12,1, 2, 15,8, 13, 14,11, 4,9, 10, 7,0, 5, 6, 3,12, 1, 2,15, 8,13,14, 11, 4, 9,10, 7,

Now we see a complete duplication: the sequence seems to restart with the 17th number
and repeat identically. Certainly, the sequence is looking less and less likely to be
random. But for some very simple purposes (certainly not involving scientific
simulations), it might appear sufficiently unpredictable (at least, to the casual observer,
who's probably less picky about these things than we are) to be of use.

Algorithms in Java: Shuffling and Random Numbers 17

In fact, this sequence is an example of a pseudo-random number sequence – a sequence of
numbers generated by mathematical formulæ (called a pseudo-random number generator,
or PRNG), where each number in the sequence is computed from one or more previous
numbers in the sequence, and where the overall result is intended to appear random.

The PRNG that generated the sequence is quite simple:

s0 = 0
si1 = 13 s i 5 mod 16

The sequence has a seed (initial value – note that we usually call the initial value in a
sequence s0 , instead of s1) of 0, and each term in the sequence is generated by
multiplying the previous term by 13, then adding 5, and finally taking the remainder
after dividing by 16.

We can keep computing the terms of this sequence indefinitely, and the pattern keeps
repeating, as shown in figure 1. The number of iterations required before the sequence
repeats is the period of a PRNG; here, the period is 16.

We can also use a different value for s0 (i.e. a different seed); we'll get the same
repeating sequence, but starting at a different point. For example, with s0 = 2 , we have:

S = 2,15,8,13,14,11,4,9,10,7,0,5,6,3,12,1,2,15,8,13, 14,11,4,9,10,7,0,5,6,3,12,1,

We might conclude that this isn't a good way to generate pseudo-random numbers, for
the simple reason that the results aren't unpredictable enough. But what if our sequence
formula used values other than 13, 5, and 16? It turns out that with careful selection of
these values, we can get much better results.

18 Algorithms in Java: Shuffling and Random Numbers

Figure 1: LCG with s
i+1

= (13s
i
 + 5) mod 16, s

0
 = 0

0 8 16 24 32 40 48
0

5

10

15

Linear Congruential Generator

The PRNG we just looked at is an example of a linear congruential generator, or LCG. An
LCG generates a sequence of pseudo-random numbers with the equation:

si1 = a s i c mod m

LCGs are included in the standard libraries of many different programming languages.
In most cases, only a portion of each si is returned as the pseudo-random value. For
example, the standard Java library generates pseudo-random integers as follows (S is
the sequence maintained internally; X is the sequence of values returned) [7]:

si1 = 25214903917 si  11 mod 248

x i = ⌊ si216 ⌋
With the division by 216 , the most obviously non-random aspects of the sequence (e.g.
the alternating odd/even pattern, characteristic of LCGs with even moduli) are
minimized. However, there are other issues with LCGs, primarily having to do with the
correlation between successive LCG values. For example, in figure 2 we see what
happens when we group the terms of our original sequence in pairs, and treat them as a
sequence of points in two dimensions:

S =0,5 , 6,3 , 12,1 , 2,15 , 8,13 , 14,11 , 4, 9 , 10,7 , 

Not only are the points very regularly
spaced, but when we view the graph
as a torus (an LCG “wraps around” at
the modulus value – in this case, 16),
we see that we can draw a single line
from (15, 0), through the point at (12,
1), and continuing (wrapping around
as appropriate) through all of the
other points!

With a well chosen LCG, with a long
period, this effect isn't nearly as visible
(especially with a small number of
dimensions), but it's still present.

Algorithms in Java: Shuffling and Random Numbers 19

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

Figure 2: 4-bit LCG in Two Dimensions

Exercise 7: Another LCG

Given the LCG:

s0 = day of the month you were born ∈ {1, 2,  , 31}
si1 = 5 si 13 mod 32

Compute the terms s1, , s2,  , s10 .

Remember that amod b = the remainder when a is divided by b . For example:

11 mod 4 = 3
37 mod 5= 2
89 mod 32= 25

Based on your calculations, and on the parameters of this LCG:

• How random does the result appear?

• What patterns do you see?

• How many distinct values of si are possible?

• What is the period of the sequence S ?

The Mersenne Twister and Other PRNGs

The Mersenne Twister is a PRNG that uses a matrix linear recurrence to generate its
pseudo-random sequence [8]. It's named for the fact that key parameters of the
generating function form the exponent of a Mersenne prime (a prime number of the form
2 p−1).

Over the last decade, the Mersenne Twister has become a popular alternative to the
LCGs provided in many standard libraries. It's now included as the standard PRNG in
Python, Ruby, R, MatLab, and Maple. Its key advantages are a very long period (equal
to the Mersenne prime 219937−1) and a lack of significant serial correlation.

There are many other PRNGs as well, each with its strengths and weaknesses. Statistical
tests can help us assess the quality of the the generated sequences, as an aid in choosing
between alternative PRNGs; other factors might include ease of implementation and
runtime efficiency. But in the end, the selection of a PRNG has a lot to do with context:

20 Algorithms in Java: Shuffling and Random Numbers

What's the intended use? How much apparent randomness is required? What's the cost
(in time, long-term code maintenance, etc.) of using a PRNG different from the one
included with the standard library?

When Pseudo-random Isn't Good Enough

Sometimes, there's no acceptable substitute for truly random numbers – at least as seed
values for PRNGs. As noted above, most computers aren't very good at genuine
randomness, but there are any number of real-world processes that have truly random
behavior. Even better, some of these processes, while random, have well-understood
statistical behavior. If we can measure one or more of these processes over time, that
may give us a good source of useful random numbers.

In fact, processes such as the radioactive decay of certain elements, photon emissions by
semiconductors, atmospheric or thermal noise – even human users' mouse movements
and keyboard activity – serve these purposes very well. Devices using these phenomena
to generate random numbers are now available; some of these are used in services that
make the resulting number sequences accessible via the Internet.

Algorithms in Java: Shuffling and Random Numbers 21

Shuffling with Java: Cards

Introduction

In previous exercises, we shuffled and picked numbers for a lottery. This time, we'll use
the Fisher-Yates algorithm (see Appendix A: Fisher-Yates Shuffle) to shuffle and deal a
deck of playing cards. At first, it might seem more complicated to shuffle cards, since
cards have suits and ranks. However, 52 distinct items are 52 distinct items, whether
they're the numbers 1 through 52, or the combinations of ranks (A, 2, 3, …, King) with
suits (Clubs, Diamonds, Hearts, Spades). In any event, the type of things being shuffled
is irrelevant to the shuffling algorithm: we simply exchange one thing for another,
repeatedly. So shuffling cards won't be much different from shuffling numbers.

The number of possible combinations of five hands of five cards each, from a 52-card
deck, is several orders of magnitude larger than the number of possible combinations in
a typical lottery (with the exception of keno). For this reason, we'll use the Mersenne
twister from the Apache Commons Math library as our PRNG, since it has a much
larger number of states (i.e. longer period) than the LCG used by the Random class [9].

We're also going to switch development environments for these exercises. We used
DrJava in the earlier exercises, to take advantage of the Interactions pane. This time,
we'll use NetBeans [10]; it doesn't have the interactive execution features, but it has
many other strengths that make it well suited to a wide variety of development projects.

Note: The code that follows assumes that the Apache Commons Math library has been
added to the NetBeans project (or to the Java classpath). Please see the NetBeans help
documentation for details on adding a library to NetBeans, and to individual projects.

The Shuffle Project in NetBeans

Let's start by launching NetBeans. (NetBeans is a pure Java program, and it does a lot of
housekeeping tasks when it starts up, so it can seem a bit slow in starting.) Once
NetBeans has completed its startup processing, use the File/Open Project… menu
command, navigate to where the Shuffle project is located (preferably on your own USB
flash drive, but the project is probably also located on the system desktop as well), and
click the Open Project button.

You should now see the Shuffle project in the Project panel of the NetBeans window. In
this panel, each project is viewed as a tree; click the “+” or “–“ symbols next to the
project name, or one of its components, to expand or collapse that portion of the tree.

22 Algorithms in Java: Shuffling and Random Numbers

We'll be writing Java source code, so we'll need to work in Source Packages portion of
the project. Expand the Shuffle project itself, then Source Packages, and finally the
org.nm.challenge.examples.cards package. (You might remember that a Java
package usually contains one or more related classes.) All of the new Java classes we
create will be in this package.

The Card Class

One of the classes we'll use has already been built for us: you should be able to see the
Card.java file in the org.nm.challenge.examples.cards package; that file
contains the Card class, along with some additional supporting classes.

This class encapsulates the attributes (rank and suit) of a playing card, along with the
simple behavior of converting itself to a string suitable for display. It also has a static
method called newDeck that returns a complete, unshuffled deck as a Card[] (array of
Card objects); we'll call that method from our own code, to start with a fresh deck of
cards. Finally, it has a method for returning the order relationship of one card vs.
another, for sorting in rank-suit order; we'll use that method implicitly to sort the dealt
hands before displaying them.

Exercise 8: The Dealer Class

What are the basic, required attributes and behaviors of the dealer in a card game? Of
course, a dealer has a deck of cards. The dealer must be able to shuffle those cards, and
then deal them out. Of course, dealing is done differently in different types of card
games; also, what the dealer might be required to do after the deal varies by the type of
game as well. For now, we'll focus just on the initial deal of some number of cards to
each of some number of players.

Based on this description of the basic attributes and behaviors of a dealer, we'll create a
Dealer class, with (at least) a shuffle method and a deal method. Creating a new
class is quite easy in NetBeans:

1. Right-click on the org.nm.challenge.examples.cards package in the
Projects panel, and select New/Java Class… from the pop-up menu.

2. Specify “Dealer” (starting with an uppercase “D”; don't type the quotes) for
Class Name; leave the other fields unchanged.

3. Click the Finish button.

Algorithms in Java: Shuffling and Random Numbers 23

You should now see a NetBeans-created skeleton Dealer class, based on the
information you provided:1

1
2
3
4
5

package org.nm.challenge.examples.cards;
public class Dealer {
}

Let's add to the class, starting with a Card[] to hold the deck of cards, and an instance
of the Mersenne twister for generating random numbers. (As in the previous exercises,
the code you've already written is grayed out. Don't rewrite this code; simply add to it.)

1
2
3
4
5
6
7
8
9

10
11
12
13

package org.nm.challenge.examples.cards;

public class Dealer {

 private MersenneTwister rng;
 private Card[] deck;
 public Dealer() {
 rng = new MersenneTwister();
 deck = Card.newDeck();
 }
}

Even if you type all of the above correctly, you'll see some red lines under the
MersenneTwister, in lines 5 and 9. Unlike DrJava, NetBeans analyzes code as we
type, looking for problems that would prevent successful compilation. When such
problems are found, they're underlined, and we can read the error message.

If you hold your mouse over one of the red lines (or over one of the error indicators in
the left margin), you'll see that NetBeans is unable to find the MersenneTwister class.
Since that class is in a different package than the one where our Dealer class is located,
we have to use an import statement to let Java know in which package the
MersenneTwister class is located.

We could go ahead and write the import statement, but let's use one of the convenient
features of NetBeans instead: right-click anywhere in the white space of the file you're

1 The default NetBeans configuration includes boilerplate comment sections in the Java class template.
In the interests of clarity and brevity, these comments aren't shown in the code here.

24 Algorithms in Java: Shuffling and Random Numbers

editing, and select Fix Imports from the pop-up menu. The red lines should disappear
(if they don't, check your spelling), and you should now see this (note the import
statement in line 3, added automatically by NetBeans):

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

package org.nm.challenge.examples.cards;

import org.apache.commons.math.random.MersenneTwister;
public class Dealer {

 private MersenneTwister rng;
 private Card[] deck;

 public Dealer() {
 rng = new MersenneTwister();
 deck = Card.newDeck();
 }

}

If you have other red underlines in your code, indicating more errors, try to eliminate
them by checking the error message and correcting the reported condition. (The large
majority of these problems are due to missing semicolons, incorrect or inconsistent
spelling or letter case, and mismatched curly braces.) When you've done that, type Ctrl-
S (or select the File/Save menu command) to save Dealer.java. (You don't need to
specify a file name; when you typed “Dealer” for the class name, NetBeans
automatically created the Dealer.java file for the Dealer class.) Every time you save
a Java file in NetBeans, it's compiled automatically – as long as there aren't any errors.

Let's review the important points of the code so far:

• The package statement (line 1) tells the Java compiler that this class will reside
in the org.nm.challenge.examples.cards package. (There's a direct
relationship between package names and the directory structures for source files
and compiled class files; fortunately, NetBeans handles this for us automatically.)

• The import statement (line 3) tells the Java compiler that our code will be using
the MersenneTwister class, from the org.apache.commons.math.random
package. (That package is part of the Apache Commons Math library, which has
already been included as part of this NetBeans project.)

• As always, a class is declared with the class keyword and the class name (line
5). The set of curly braces that follows (lines 5 and 15) contains the class body.

Algorithms in Java: Shuffling and Random Numbers 25

• We've declared two private variables to hold the state data for Dealer objects:
rng, which is a MersenneTwister object (line 7), and deck, which is a
Card[], or array of Card objects (line 8).

• We've defined a public constructor for the Dealer class (lines 10-13); like all
constructors, this one has the same name as the class. The purpose of this
constructor is to initialize the data of a Dealer object – to do that, it creates and
initializes the rng variable by calling the MersenneTwister constructor, and
creates and initializes the deck variable by calling the Card.newDeck method.

Now, let's add the shuffle method. Unlike the shuffle code we wrote in the lottery
exercises, this code will implement a full shuffle of the deck.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

package org.nm.challenge.examples.cards;

import org.apache.commons.math.random.MersenneTwister;

public class Dealer {

 private MersenneTwister rng;
 private Card[] deck;

 public Dealer() {
 rng = new MersenneTwister();
 deck = Card.newDeck();
 }

 public void shuffle() {
 for (int i = 0; i < deck.length - 1; i++) {
 int selection = i + rng.nextInt(deck.length – i);
 if (selection != i) {
 Card temp = deck[selection];
 deck[selection] = deck[i];
 deck[i] = temp;
 }
 }
 }
}

Once again, you might see red underlines, indicating that NetBeans has detected one or
more problems that will prevent Java from compiling the code. Fix any such errors
(requesting help as needed), and save your file.

26 Algorithms in Java: Shuffling and Random Numbers

Let's look at what the shuffle method is doing (lines 15-22):

• We use a for statement to iterate over values of i from 0 (inclusive) to
deck.length - 1 (exclusive). This results in the code between the curly braces
(lines 16 and 21) executing deck.length - 1 times, which will shuffle the
deck.length elements of the deck array completely.

• In each iteration, we generate a pseudo-random number (line 17) between i
(inclusive) and deck.length (exclusive). This is the index of our randomly
selected Card in the deck array.

• In lines 19-21, we exchange element selection in the deck array with element
i – but only if selection isn't equal to i (if they're equal, the exchange isn't
necessary). This moves our randomly selected Card to its shuffled position.

Now that we've shuffled the deck of cards, we need a way to deal them out. To do this,
we need to answer a couple of questions first:

• In what order will we deal the cards? Traditionally, the dealer deals one card to
each player, until all players have the required number of cards; we'll follow this
convention in our code.

• What's the right Java structure for holding multiple hands of cards? So far, we've
been using arrays to hold multiple items of the same type, but we've only used
them for one-dimensional structures. Fortunately, we can also have arrays with
two (or more) dimensions; that's the approach we'll take.

What does a two-dimensional array look like? Imagine that we have the
following declaration and assignment statement, for a two-dimensional array of
Card objects:

Card[][] cards = new Card[4][5];

We can visualize the elements of the array with the arrangement shown in table
4. (Can you see the pattern in the indices?)

cards[0][0] cards[0][1] cards[0][2] cards[0][3] cards[0][4]
cards[1][0] cards[1][1] cards[1][2] cards[1][3] cards[1][4]
cards[2][0] cards[2][1] cards[2][2] cards[2][3] cards[2][4]
cards[3][0] cards[3][1] cards[3][2] cards[3][3] cards[3][4]

Table 4: Two-dimensional Array

Algorithms in Java: Shuffling and Random Numbers 27

With those decisions out of the way, let's write the deal method.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

package org.nm.challenge.examples.cards;

import org.apache.commons.math.random.MersenneTwister;

public class Dealer {

 private MersenneTwister rng;
 private Card[] deck;

 public Dealer() {
 rng = new MersenneTwister();
 deck = Card.newDeck();
 }

 public void shuffle() {
 for (int i = 0; i < deck.length - 1; i++) {
 int selection = i + rng.nextInt(deck.length - i);
 if (selection != i) {
 Card temp = deck[selection];
 deck[selection] = deck[i];
 deck[i] = temp;
 }
 }
 }

 public Card[][] deal(int numberOfHands, int cardsPerHand) {
 Card[][] cards = new Card[numberOfHands][cardsPerHand];
 for (int i = 0; i < cardsPerHand; i++) {
 for (int j = 0; j < numberOfHands; j++) {
 cards[j][i] = deck[i * numberOfHands + j];
 }
 }
 return cards;
 }
}

Do your best to fix any errors marked with red underlines, then save your file.

The deal method has a few things we haven't seen before, so let's review it carefully:

• The return type is Card[][] (line 24). As we discussed, this indicates a two-
dimensional array, where each element contains a Card.

28 Algorithms in Java: Shuffling and Random Numbers

• This method requires two additional pieces of information to do its job. One is an
int called numberOfHands; the other is an int called cardsPerHand (line 24).
These represent the number of player hands the method will deal, and the
number of cards to be dealt to each hand, respectively.

• We've declared and initialized a local variable called cards, which is a two-
dimensional array of Card objects (line 25). We'll put the cards we deal into this
array, and return it as the result of the deal method.

• Since we're going to deal the first card to every player's hand, then the second
card to every player's hand, etc., we need two different iteration loops, one
nested inside the other. The first uses i as a variable to count the current card
being dealt; the second uses j as a variable to count the current hand to which a
card is being dealt. With i, we're counting from 0 (inclusive) to cardsPerHand
(exclusive); for each of the i values, we're counting from 0 (inclusive) to
numberOfHands (exclusive) with j.

• For every pair of i and j values, we put a card from deck into cards[j][i]
(line 28). But how do we know which element of deck should go into each
element of cards? With a little bit of thought, we notice that each time we deal
one card to all of the player hands, we go through numberOfHands cards in
deck. So if we multiply the card counter (i) by numberOfHands, and then add
the hand counter (j), the result is the total number of cards dealt to this point –
which is the index of the element in deck that we should deal.

• After we've finished filling the two-dimensional cards array with items from
the deck array, we return the cards array as the result of the method (line 31).

Fix any errors that appear, and save your file. You should now have a completed
Dealer class (at least, the lack of errors tells us that it's syntactically correct) – but you
don't yet have a way to test it, to make sure it does what it's supposed to do. (NetBeans
has built-in support for JUnit, a toolkit used for building and running tests of each of
the classes in a project; however, JUnit is outside the scope of this lesson.) So the next
step is to build a Java program that uses the Dealer class to deal a deck of cards, and
then displays the results.

Exercise 9: Writing a Java Program that Uses the Dealer Class

In a simplistic way, our Java program will act as the host for a card game. The host
brings a dealer in, and tells the dealer how many cards should be dealt, to how many

Algorithms in Java: Shuffling and Random Numbers 29

players. At this point, that's where the analogy ends: our program will then turn over
all the cards, so everyone can see them, and that's that – but it's enough for now.

Right-click on org.nm.challenge.examples.cards, under Source Packages in the
Projects panel, and select New/Java Main Class… from the pop-up menu. This time,
type “Host” in the Class Name field, leave the other fields unchanged, and click the
Finish button. NetBeans creates and opens the Host.java file, as follows:

1
2
3
4
5
6
7
8
9

package org.nm.challenge.examples.cards;
public class Host {
 public static void main(String[] args) {
 }
}

There aren't really any surprises here. The most important point to remember is that a
Java program class must have a main method, with public visibility, with the void
return type (i.e. no data will be returned), and with one String[] parameter.

Now, let's go ahead and fill in the first part of the main method (along with some
constants), to create a Dealer object, then have it shuffle and deal the cards.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

package org.nm.challenge.examples.cards;

public class Host {

 private static final int NUMBER_OF_HANDS = 5;
 private static final int CARDS_PER_HAND = 5;
 public static void main(String[] args) {
 Card[][] hands;
 Dealer dealer = new Dealer();
 dealer.shuffle();
 hands = dealer.deal(NUMBER_OF_HANDS, CARDS_PER_HAND);
 }

}

Fix any errors, and save your code. When you've done that, let's review the additions:

30 Algorithms in Java: Shuffling and Random Numbers

• We've declared two static final variables (lines 5-6). Remember that this
combination of keywords identifies a constant – a variable whose value can't be
changed after the initial assignment. In this case, one constant
(NUMBER_OF_HANDS) is the number of different player hands that will be dealt;
the other (CARDS_PER_HAND) is the number of cards to deal to each player.

• The main method starts by declaring the local variable hands (line 9), which
we'll use to store the hands dealt by our Dealer object.

• In lines 10-11, we create and initialize the dealer variable (an object of the
Dealer class type), and call its shuffle method.

• Next, we call the dealer.deal method, using the constants declared above to
specify the number of player hands to deal, and the number of cards to deal to
each (line 12). That method returns a two-dimensional array of Card, which we
store in hands.

The last task in the exercise is to sort and display the cards in each hand. This could
potentially be somewhat tricky. After all, in our lottery exercises, we saw that the
Arrays class had very convenient methods for sorting the elements of numeric arrays
and converting them to strings. But does the Array class know how to sort arrays of
Card objects, or convert them to strings?

In general, Arrays.sort can't automatically infer the correct ordering between two
objects of a custom class type. Further, while all classes have a toString method,
which is called automatically by Arrays.toString, the default implementation isn't
very good for display custom classes.

Fortunately, there are solutions. For sorting, a class can implement the Comparable
interface (an interface is similar to a class, but it doesn't have implementations of its
declared methods; a class implementing an interface must implement all its methods),
which declares the compareTo method. In an implementation of that method, an object
compares itself to another, returning a value for the ordering between the two. With
that additional information, Arrays.sort can sort objects of that class type in arrays.

Similarly, a class can override the default implementation of the toString method.
Any method that converts objects to strings (e.g. Arrays.toString) will
automatically take advantage of this overridden method.

Algorithms in Java: Shuffling and Random Numbers 31

In fact, the Card class includes both of these features: it implements compareTo and
overrides toString. Because of this, sorting and displaying the contents of a Card[]
is as easy as sorting and displaying the contents of an int[].

Now, let's add the code to sort and display the cards dealt to us by the Dealer object,
by iterating over the hands, sorting and displaying each one in turn.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

package org.nm.challenge.examples.cards;

import java.util.Arrays;
public class Host {

 private static final int NUMBER_OF_HANDS = 5;
 private static final int CARDS_PER_HAND = 5;

 public static void main(String[] args) {
 Card[][] hands;
 Dealer dealer = new Dealer();
 dealer.shuffle();
 hands = dealer.deal(NUMBER_OF_HANDS, CARDS_PER_HAND);
 for (int i = 0; i < NUMBER_OF_HANDS; i++) {
 Arrays.sort(hands[i]);
 System.out.printf("Hand #%d: %s\n",
 i + 1, Arrays.toString(hands[i]));
 }
 }

}

With the mixture of parentheses, square brackets, and curly braces in the new code,
typographic errors are all too easy to commit. Be sure to read all error messages for
code underlined in red, and then save your file.

The new code uses some notation that might be confusing at first glance. But let's start
at the first line of the additions, and deal with the any confusion when we get to it:

• Because we're using methods of the Arrays class in the new code, we need an
import statement (line 3). We can either write this line by hand, or use the Fix
Imports feature, after we've added code that refers to the Arrays class.

• Once again, we use the for statement – this time using the variable i to count
from 0 (inclusive) to NUMBER_OF_HANDS (exclusive). For each value of i, Java
will execute the statements between the curly braces on lines 13 and 17.

32 Algorithms in Java: Shuffling and Random Numbers

• In line 14, Arrays.sort is being used to sort hands[i] – but what is
hands[i]? We know that hands is a two-dimensional array, and that an
expression like hands[a][b] refers to a single element in the hands array. So
what does hands[i] – with only one index specified – mean?

If we look again at table 4, we remember that the first index specifies the row of
the two-dimensional array, and the second specifies the column. If only the first
index is specified, then we only know the row, and not the column. In fact, such
an expression refers to the entire row as an array. So hands[i] refers to the
array containing all of the cards in the player hand stored in row i of hands. So
Arrays.sort(hands[i]) sorts the cards in a single player hand. (Incidentally,
there's not an equivalent for referring to an entire column of a two-dimensional
array at once.)

• We use the same notation in line 16, where we call Arrays.toString to
convert the hands[i] array (i.e. the array containing all of the cards in a single
player hand) to a string. The result of this conversion is substituted for the
second placeholder (“%s”) in the first parameter of the System.out.printf
method call, in lines 15-16; the first placeholder (“%d”) is replaced by the current
player hand counter – actually, i + 1, since we start counting with 0, but want
the display to start at 1. After the substitution of values for placeholders is done,
the result is written to standard output (i.e. the console display), followed by a
newline character (so the cards in the next hand are written on the next line).

A NetBeans project can contain many Java program classes. Even a single executable
Java archive (a ZIP file, but with a .jar extension, containing compiled Java files and
other resources) could have multiple Java program classes. So the last thing we need to
do, before running our program, is tell NetBeans that it should treat the Host class as
the “main” class, the one where Java will look for the main method. To do this, follow
these steps:

1. Right-click on the Shuffle project in the Projects panel.

2. Select Properties from the pop-up menu.

3. In the Categories panel of the Project Properties window, click Run.

4. Click the Browse… button to the right of the Main Class field.

Algorithms in Java: Shuffling and Random Numbers 33

5. If your Host class has been written correctly,
org.nm.challenge.examples.cards.Host will appear in the list of main
classes. Click on it to highlight it, and then click the Select Main Class button.

6. Click the OK button in the Project Properties window.

Now we're ready to run the program. Select the Run/Run Main Project menu
command, or click the green triangle icon in the toolbar near the top of the NetBeans
window.

In the Output panel at the bottom of the screen, you should see something like this
(though with different cards):

Hand #1: [3♣, 8 , 10 , 10♠, J♣]♢ ♢
Hand #2: [4♠, 5 , 7 , 8♠, J]♢ ♡ ♢
Hand #3: [2♠, 4 , 6♠, 9♣, 9]♡ ♢
Hand #4: [3♠, 7♠, 8 , J , A]♡ ♡ ♢
Hand #5: [2 , 6 , K♣, K , A]♢ ♢ ♢ ♡

Check to make sure that each of the hands are sorted (with the ace high), and that no
card appears simultaneously in more than one hand.

Run the program a few more times, and check the results. Is it doing what you expected
it to do? (Remember that each time you run it, you're starting with a fresh deck of cards
and shuffling it; cards that appear in hands for one run may appear in other runs as
well.)

34 Algorithms in Java: Shuffling and Random Numbers

Exercise 10: Additional Questions and Tasks

I. Modify your Host class, so that it deals 4 hands of 13 cards each (a bridge deal).

II. How many combinations of cards, with five hands of five cards each, can be
dealt? Assume that order of cards within a hand is not significant, but the order
of the hands themselves is significant. For example,

Hand #1: [3♣, 8 , 10 , 10♠, J♣]♢ ♢
Hand #2: [4♠, 5 , 7 , 8♠, J]♢ ♡ ♢
Hand #3: [2♠, 4 , 6♠, 9♣, 9]♡ ♢
Hand #4: [3♠, 7♠, 8 , J , A]♡ ♡ ♢
Hand #5: [2 , 6 , K♣, K , A]♢ ♢ ♢ ♡

is different from

Hand #1: [4♠, 5 , 7 , 8♠, J]♢ ♡ ♢
Hand #2: [3♣, 8 , 10 , 10♠, J♣]♢ ♢
Hand #3: [2♠, 4 , 6♠, 9♣, 9]♡ ♢
Hand #4: [3♠, 7♠, 8 , J , A]♡ ♡ ♢
Hand #5: [2 , 6 , K♣, K , A]♢ ♢ ♢ ♡

even though they are identical, save for hands 1 and 2 switching places.

III. If we don't specify a seed value when creating a MersenneTwister object, it
takes the current system date/time (in elapsed milliseconds since midnight on 1
January, 1970) as a seed. There is a theoretical maximum of 264 values of this
timer; however, in any given 10 year period (e.g. the 10 years starting now), there
will be fewer than 236 distinct values. In our program, distinct shuffle and deal
outcomes can only be produced with different seed values for the PRNG. Thus,
no matter how many times we run the current program over the next 10 years,
the maximum number of distinct outcomes will be less than 236 . Based on this,
and based on your answer to the previous question, do you think the results of
the shuffle in the current program can be considered fair?

IV. Modify the Dealer class, so that a long or int[] value can be value can be
specified as a seed in the constructor. Use the setSeed method of the
MersenneTwister class, or one of the constructors that takes a seed value as a
parameter, to initialize the PRNG with the specified seed.

V. Without worrying about the specific Java code required to do so, can you think
of a way your program might be modified, so that it would start with a seed that
had at least 264 (and preferably more) actual and practical possible values?

Algorithms in Java: Shuffling and Random Numbers 35

Acknowledgments

Development of this material was funded in part by the New Mexico Supercomputing
Challenge.

Many thanks to Roger Critchlow and Janet Penevolpe for their review and feedback
during the initial writing of this material, and to Janet for her assistance in introducing
this material to students at the 2009 kickoff conference of the New Mexico
Supercomputing Challenge.

36 Algorithms in Java: Shuffling and Random Numbers

References

[1] B. Arkin, F. Hill, S. Marks, M. Schmid, T.J. Walls, and G. McGraw, “How We
Learned to Cheat at Online Poker: A Study in Software Security,”
Developer.com, Sept. 28, 1999. [Online]. Available:
http://www.developer.com/tech/article.php/10923_616221_1/How-We-Learned-
to-Cheat-at-Online-Poker-A-Study-in-Software-Security.htm. [Accessed: Jul. 10,
2010].

[2] Rob Weir, “Doing the Microsoft Shuffle: Algorithm Fail in Browser Ballot,” Mar.
6, 2010. [Online]. Available: http://www.robweir.com/blog/2010/02/microsoft-
random-browser-ballot.html. [Accessed: Jul. 10, 2010].

[3] “Shuffling”, Wikipedia, Jul. 10, 2009. [Online]. Available:
http://en.wikipedia.org/wiki/Shuffling#Shuffling_algorithms. [Accessed: Jul. 10,
2010].

[4] "Fisher-Yates shuffle", Wikipedia, Jun. 15, 2009. [Online]. Available:
http://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle. [Accessed: Jul.10,
2010].

[5] New Mexico Lottery, "How to Play Roadrunner Cash", 2009. [Online]. Available:
http://www.nmlottery.com/how-to-play-roadrunner-cash.aspx. [Accessed: Jul.
10, 2009].

[6] DrJava. [Download]. Rice University JavaPLT, Oct. 21, 2009. Available:
http://www.drjava.org. [Accessed: Jul. 10, 2010]

[7] Random.java v1.47 (Java SE 6). [Download]. Sun Microsystems, Inc., June 2, 2007.
Available: http://java.sun.com/javase/downloads/. [Accessed: Jul. 10, 2010].

[8] "Mersenne twister", Wikipedia, Jul. 9, 2010. [Online]. Available:
http://en.wikipedia.org/wiki/Mersenne_twister. [Accessed: Jul. 10, 2010].

[9] Apache Commons Math v2.1. [Download]. Apache Software Foundation, May 8,
2010. Available: http://commons.apache.org/math/download_math.cgi.
[Accessed: Jul. 10, 2010].

[10] NetBeans v6.9. [Download]. Sun Microsystems, Inc., Jun. 15, 2010. Available:
http://netbeans.org/downloads/. [Accessed: Jul. 10, 2010].

Algorithms in Java: Shuffling and Random Numbers 37

http://en.wikipedia.org/wiki/Mersenne_twister
http://netbeans.org/downloads/
http://www.drjava.org/
http://www.nmlottery.com/how-to-play-roadrunner-cash.aspx
http://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle
http://en.wikipedia.org/wiki/Shuffling#Shuffling_algorithms
http://www.robweir.com/blog/2010/02/microsoft-random-browser-ballot.html
http://www.robweir.com/blog/2010/02/microsoft-random-browser-ballot.html
http://www.developer.com/tech/article.php/10923_616221_1/How-We-Learned-to-Cheat-at-Online-Poker-A-Study-in-Software-Security.htm
http://www.developer.com/tech/article.php/10923_616221_1/How-We-Learned-to-Cheat-at-Online-Poker-A-Study-in-Software-Security.htm
http://en.wikipedia.org/wiki/Shuffling#Shuffling_algorithms
http://commons.apache.org/math/download_math.cgi
http://en.wikipedia.org/wiki/Shuffling#Shuffling_algorithms
http://en.wikipedia.org/wiki/Shuffling#Shuffling_algorithms
http://en.wikipedia.org/wiki/Shuffling#Shuffling_algorithms
http://en.wikipedia.org/wiki/Shuffling#Shuffling_algorithms
http://en.wikipedia.org/wiki/Shuffling#Shuffling_algorithms
http://en.wikipedia.org/wiki/Shuffling#Shuffling_algorithms
http://en.wikipedia.org/wiki/Shuffling#Shuffling_algorithms
http://en.wikipedia.org/wiki/Shuffling#Shuffling_algorithms
http://en.wikipedia.org/wiki/Shuffling#Shuffling_algorithms
http://java.sun.com/javase/downloads/
http://en.wikipedia.org/wiki/Shuffling#Shuffling_algorithms
http://en.wikipedia.org/wiki/Shuffling#Shuffling_algorithms
http://en.wikipedia.org/wiki/Shuffling#Shuffling_algorithms
http://en.wikipedia.org/wiki/Shuffling#Shuffling_algorithms
http://en.wikipedia.org/wiki/Shuffling#Shuffling_algorithms
http://en.wikipedia.org/wiki/Shuffling#Shuffling_algorithms
http://en.wikipedia.org/wiki/Shuffling#Shuffling_algorithms
http://en.wikipedia.org/wiki/Shuffling#Shuffling_algorithms
http://en.wikipedia.org/wiki/Shuffling#Shuffling_algorithms
http://en.wikipedia.org/wiki/Shuffling#Shuffling_algorithms
http://en.wikipedia.org/wiki/Shuffling#Shuffling_algorithms
http://en.wikipedia.org/wiki/Shuffling#Shuffling_algorithms
http://en.wikipedia.org/wiki/Shuffling#Shuffling_algorithms
http://en.wikipedia.org/wiki/Shuffling#Shuffling_algorithms
http://en.wikipedia.org/wiki/Shuffling#Shuffling_algorithms
http://en.wikipedia.org/wiki/Shuffling#Shuffling_algorithms
http://en.wikipedia.org/wiki/Shuffling#Shuffling_algorithms
http://en.wikipedia.org/wiki/Shuffling#Shuffling_algorithms
http://en.wikipedia.org/wiki/Shuffling#Shuffling_algorithms
http://en.wikipedia.org/wiki/Shuffling#Shuffling_algorithms
http://en.wikipedia.org/wiki/Shuffling#Shuffling_algorithms

Appendix A: Fisher-Yates Shuffle

Durstenfeld's version of Fisher-Yates shuffle (aka Knuth shuffle)

1. Begin with the list of items X , containing the N items x1, x2,  , x N .

2. For each integer value j , starting at 1 and ending with N−1 , do the following:

a. Generate a random value k , which can be any one of { j , j1,  , N } ; each
of the values must be equally likely to be selected.

b. Exchange the positions of xk and x j in the list. Note that it's possible (and
valid) that k = j ; obviously, no exchange is needed when this is the case, but
this should still be counted as the k th iteration.

3. Stop. The list is now shuffled.

38 Algorithms in Java: Shuffling and Random Numbers

Appendix B: Fisher-Yates Shuffle for Six Items and a Six-Sided Die

Algorithm

1. Write the names of the six items to be shuffled in columns 1 through the 6, under
Position (i), in the Initial row.

2. Start on row 1 (i.e. the row where the number 1 appears in the Iteration (j)
column).

3. Do the following for rows 1 through 5, in order:

a. Set j equal to the row number.

b. Throw a single die to get a random value k , repeating as necessary to get a
value between j and N (in this case, 6), inclusive.

c. Write the k value in the Roll (k) column of the current row.

d. Copy the items from the previous row to the current row, exchanging the
items in position k and position j .

4. Stop. Row 5 contains the fully shuffled items.

Working Table

Items (N = Number of Items = 6)

Position (i)

Iteration
(j)

Roll
(k) 1 2 3 4 5 6

Initial

1

2

3

4

5

Algorithms in Java: Shuffling and Random Numbers 39

Appendix C: Lottery Class (Lottery.java)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

import java.util.Arrays;
import java.util.Random;
public class Lottery {
 private int[] numbers;
 private Random rng = new Random();
 public Lottery(int maximum) {
 numbers = new int[maximum];
 for (int i = 0; i < numbers.length; i++) {
 numbers[i] = i + 1;
 }
 }
 private void mix(int iterations) {
 for (int i = 0; i < iterations; i++) {
 int shuffleIndex =
 i + rng.nextInt(numbers.length - i);
 int temp = numbers[shuffleIndex];
 numbers[shuffleIndex] = numbers[i];
 numbers[i] = temp;
 }
 }
 public int[] pick(int numbersToPick) {
 int[] selection;
 mix(numbersToPick);
 selection = Arrays.copyOf(numbers, numbersToPick);
 Arrays.sort(selection);
 return selection;
 }
}

40 Algorithms in Java: Shuffling and Random Numbers

Appendix D: Roadrunner Lottery Program (Roadrunner.java)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

import java.util.Arrays;
public class Roadrunner {
 private static final int MAXIMUM_NUMBER = 37;
 private static final int NUMBER_TO_PICK = 5;
 private static final int NUMBER_OF_TICKETS = 10;
 public static void main(String[] args) {
 Lottery lotto = new Lottery(MAXIMUM_NUMBER);
 for (int i = 1; i <= NUMBER_OF_TICKETS; i++) {
 int[] selection = lotto.pick(NUMBER_TO_PICK);
 String selectString = Arrays.toString(selection);
 System.out.printf("Ticket #%d: %s\n",
 i, selectString);
 }
 }
}

Algorithms in Java: Shuffling and Random Numbers 41

Appendix E: Card Class (Card.java)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

package org.nm.challenge.examples.cards;
import java.util.Arrays;
public class Card implements Comparable {
 private static final String TO_STRING_PATTERN = "%s%s";
 private static Card[] prototypeDeck;
 private Rank rank;
 private Suit suit;
 static {
 prototypeDeck = new Card[Rank.values().length
 * Suit.values().length];
 int position = 0;
 for (Suit suit : Suit.values()) {
 for (Rank rank : Rank.values()) {
 prototypeDeck[position++] =
 new Card(rank, suit);
 }
 }
 }
 public Card(Rank rank, Suit suit) {
 this.rank = rank;
 this.suit = suit;
 }
 public Rank getRank() {
 return this.rank;
 }
 public Suit getSuit() {
 return this.suit;
 }
 public static Card[] newDeck() {
 return Arrays.copyOf(prototypeDeck,
 prototypeDeck.length);
 }

42 Algorithms in Java: Shuffling and Random Numbers

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

 public String toString() {
 return String.format(TO_STRING_PATTERN,
 this.rank, this.suit);
 }
 public int compareTo(Object o) {
 int result = 0;
 if (o instanceof Card) {
 Card other = (Card) o;
 result = getRank().compareTo(other.getRank());
 if (result == 0) {
 result = getSuit().compareTo(other.getSuit());
 }
 }
 else {
 result = toString().compareTo(o.toString());
 }
 return result;
 }
 public enum Rank {
 TWO("2"),
 THREE("3"),
 FOUR("4"),
 FIVE("5"),
 SIX("6"),
 SEVEN("7"),
 EIGHT("8"),
 NINE("9"),
 TEN("10"),
 JACK("J"),
 QUEEN("Q"),
 KING("K"),
 ACE("A");
 private String display;
 Rank(String display) {
 this.display = display;
 }
 public String toString() {
 return display;
 }

 }

Algorithms in Java: Shuffling and Random Numbers 43

92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112

 public enum Suit {
 CLUBS((char) 0x2663),
 DIAMONDS((char) 0x2662),
 HEARTS((char) 0x2661),
 SPADES((char) 0x2660);
 private char display;
 Suit(char display) {
 this.display = display;
 }
 public String toString() {
 return Character.toString(display);
 }
 }
}

44 Algorithms in Java: Shuffling and Random Numbers

Appendix E: Card Dealer Class (Dealer.java)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

package org.nm.challenge.examples.cards;
import org.apache.commons.math.random.MersenneTwister;
public class Dealer {
 private MersenneTwister rng;
 private Card[] deck;
 public Dealer() {
 rng = new MersenneTwister();
 deck = Card.newDeck();
 }
 public void shuffle() {
 for (int i = 0; i < deck.length - 1; i++) {
 int selection = i + rng.nextInt(deck.length - i);
 if (selection != i) {
 Card temp = deck[selection];
 deck[selection] = deck[i];
 deck[i] = temp;
 }
 }
 }
 public Card[][] deal(int numberOfHands, int cardsPerHand) {
 Card[][] cards = new Card[numberOfHands][cardsPerHand];
 for (int i = 0; i < cardsPerHand; i++) {
 for (int j = 0; j < numberOfHands; j++) {
 cards[j][i] = deck[i * numberOfHands + j];
 }
 }
 return cards;
 }
}

Algorithms in Java: Shuffling and Random Numbers 45

Appendix F: Card Shuffle Test Class (Host.java)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

package org.nm.challenge.examples.cards;
import java.util.Arrays;
public class Host {
 private static final int NUMBER_OF_HANDS = 5;
 private static final int CARDS_PER_HAND = 5;
 public static void main(String[] args) {
 Card[][] hands;
 Dealer dealer = new Dealer();
 dealer.shuffle();
 hands = dealer.deal(NUMBER_OF_HANDS, CARDS_PER_HAND);
 for (int i = 0; i < NUMBER_OF_HANDS; i++) {
 Arrays.sort(hands[i]);
 System.out.printf("Hand #%d: %s\n",
 i + 1, Arrays.toString(hands[i]));
 }
 }
}

46 Algorithms in Java: Shuffling and Random Numbers

	Algorithms in Java:
Shuffling and Random Numbers
	Copyright and License
	Algorithms
	Introduction
	What Makes an Effective Algorithm?
	Shuffling: The Flip Side of Sorting
	Exercise 1: Shuffling a List of Six Items by Rolls of a Die
	Exercise 2: Additional Questions and Tasks

	Shuffling with Java: Lotteries
	Introduction
	Exercise 3: Writing a Lottery Class in Java
	Exercise 4: Testing the Lottery Class Interactively
	Exercise 5: Writing a Java Program That Uses the Lottery Class
	Exercise 6: Additional Questions and Tasks

	Random and Pseudo-random Numbers
	The Need for Randomness
	The Appearance of Randomness
	Linear Congruential Generator
	Exercise 7: Another LCG
	The Mersenne Twister and Other PRNGs
	When Pseudo-random Isn't Good Enough

	Shuffling with Java: Cards
	Introduction
	The Shuffle Project in NetBeans
	The Card Class
	Exercise 9: Writing a Java Program that Uses the Dealer Class
	Exercise 10: Additional Questions and Tasks

	Acknowledgments
	References
	Appendix A: Fisher-Yates Shuffle
	Durstenfeld's version of Fisher-Yates shuffle (aka Knuth shuffle)

	Appendix B: Fisher-Yates Shuffle for Six Items and a Six-Sided Die
	Appendix C: Lottery Class (Lottery.java)
	Appendix D: Roadrunner Lottery Program (Roadrunner.java)
	Appendix E: Card Class (Card.java)
	Appendix E: Card Dealer Class (Dealer.java)
	Appendix F: Card Shuffle Test Class (Host.java)

